Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является.

Презентация:



Advertisements
Похожие презентации
1. Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
Advertisements

Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AA 1, BB 1, CC 1. Найдите его.
Упражнение 1 Найдите диагональ прямоугольного параллелепипеда, ребра которого, выходящие из одной вершины, равны 2, 3, 6. Ответ: 7.
Ответ: Общей частью двух призм ABA 1 DCD 1 и ABB 1 DCC 1 является призма ABPDCP, объем которой равен 0,25. Найдите объем общей части двух призм ABA 1 DCD.
Васильев Иван ( выпуск 2012) 17 В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить.
Расстояние от точки до прямой Расстояние от точки до прямой, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на.
Задание Чему равна площадь поверхности куба с ребром 1? Ответ: 6.
СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ В9 многогранники. Найдите площадь поверхности многогранника, изображенного на рисунке.
Решение заданий С 2 координатно- векторным методом.
В правильной четырехугольной призме АВСDА 1 В 1 С 1 D 1 стороны основания равны 2, а боковые ребра 5. На ребре АА 1 отмечена точка Е, так что АЕ : ЕА.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Готовимся к ЕГЭ. Прототипы В 9, В 11. Комбинация: призма - пирамида. В создании презентации принимали участие ученики 10 В класса Козлов Артем и Синицына.
Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды х 1 0.
Отрезок AB длины 1 вращается вокруг прямой c, параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.
Задачи на нахождение площади сечения многогранника Подготовка к решению задач ЕГЭ Автор: Ингинен Ольга Вячеславовна, учитель математики, МОУ «СОШ 6» г.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых Для отношения.
Обобщенный конус Пусть F - фигура на плоскости π, и S - точка вне этой плоскости. Отрезки, соединяющие точки фигуры F с точкой S, образуют фигуру в пространстве,
Тест «Объем пирамиды и призмы» МОУ Барагашская СОШ Шагаева А.Б.
Открытый банк заданий по математике. А B C D E F Найдите объем многогранника, вершинами которого являются точки A, B, C, D, E, F, A 1 правильной.
Транксрипт:

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является четырехугольная пирамида A 1 ABCD. Ее объем равен 1/3.

Найдите объем многогранника, вершинами которого являются вершины A, D, A 1, B, C, B 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является треугольная призма ADA 1 BCB 1. Ее объем равен 0,5.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1, B 1, C 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомый многогранник получается из куба отсечением треугольной пирамиды DA 1 C 1 D 1. Его объем равен 5/6.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABC. Ее объем равен 1/6.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, D 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является четырехугольная пирамида ABCD 1 A 1. Ее объем равен 1/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, B 1, D 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомый многогранник ABCB 1 D 1 составлен из двух треугольных пирамид с общим основанием. Он получается из куба отсечением трех треугольных пирамид. Его объем равен 0,5.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, C 1, D 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомый многогранник ABСA 1 C 1 D 1 получается отсечением от куба двух треугольных пирамид. Его объем равен 2/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, B 1, C 1, D 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомый многогранник ABСB 1 C 1 D 1 получается отсечением от куба двух треугольных пирамид. Его объем равен 2/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1 правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABC. Ее объем равен 1/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, A 1, C 1 правильной треугольной призмы ABCA 1 B 1 C 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида C 1 ABA 1. Ее объем равен 1/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, E, F, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является шестиугольная пирамида A 1 ABCDEF. Ее объем равен 1/3.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABC. Ее объем равен 1/18.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная пирамида A 1 ABCD. Ее объем равен 1/6.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, E, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является пятиугольная пирамида A 1 ABCDE. Ее объем равен 5/18.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, B 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная пирамида СABB 1 A 1. Ее объем равен 1/9.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, A 1, B 1, C 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная призма ABCA 1 B 1 C 1. Ее объем равен 1/6.

Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1, B 1, C 1, D 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является четырехугольная призма ABCDA 1 B 1 C 1 D 1. Ее объем равен 1/2.

Найдите объем многогранника, вершинами которого являются вершины A, B, D, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ABD. Ее объем равен 1/9.

Найдите объем многогранника, вершинами которого являются вершины A, C, E, A 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида A 1 ACE. Ее объем равен 1/6.

Найдите объем многогранника, вершинами которого являются вершины A, B, B 1, C 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида C 1 ABB 1. Ее объем равен 1/18.

Найдите объем многогранника, вершинами которого являются вершины A, B, С 1, D 1 правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, площадь основания и боковое ребро которой равны 1. Ответ: Искомым многогранником является треугольная пирамида D 1 ABC 1. Ее объем равен 1/18.