О 1 АВ ПРИМЕНЕНИЕ ПРИЗНАКА ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.

Презентация:



Advertisements
Похожие презентации
q p a a a p, p a q, q Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то.
Advertisements

q p a a a p, p a q, q Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то.
Повторение Какие прямые в пространстве называются перпендикулярными? Каково может быть взаимное расположение перпендикулярных прямых в пространстве?
Р е к о м е н д а ц и и к з а д а ч а м 1 2 3, 1 2 7, 1 2 8, 1 2 9, 1 3 0,
Прямая МВ перпендикулярна к сторонам АВ и ВС треугольника АВС. Определите вид треугольника МВD, где D – произвольная точка прямой АС. А С ВD Дома 126.М.
В треугольнике АСВ угол С- прямой. Прямая DВ перпендикулярна плоскости АВС. Провести из точки D перпендикуляр к прямой АС. С А В D.
В К O С Через точку О пересечения диагоналей квадрата, сторона которого равна a, проведена прямая ОК, перпендикулярная к плоскости квадрата.
121 Дано: ΔАВС, угол С – прямой, АС = 8 см, СМ – медиана, СК перпендикулярна (АВС), СК=12 см Найти: КМ Решение:
Содержание: 1) Тема презентации 2) Содержание 3) Прямоугольник 4) Свойства прямоугольника 5) Задачки на прямоугольник 6) Ромб (определение, рисунок) 7)
Решение задач Самостоятельная работа. А В С М О Точка М одинаково удалена от всех вершин правильного треугольника со стороной 5 3 см и удалена.
Перпендикулярность прямой и плоскости Шаляпина Галина Ивановна учитель математики МБОУ «Нижнекулойская средняя общеобразовательная школа» Верховажского.
Теорема о трёх перпендикулярах Решение задач Самостоятельная работа.
Определение.a a S A F N D H Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Прямая.
Теорема о трёх перпендикулярах Шаляпина Галина Ивановна учитель математики МБОУ «Нижнекулойская средняя общеобразовательная школа» Верховажского района.
Видеоурок по геометрии (10 класс) по теме: Урок по теме "Перпендикулярность прямой и плоскости. Решение задач "
Обобщающий урок по теме «Перпендикулярность прямых и плоскостей» МОУ СОШ 1 г. Кировграда Учитель математики Уткова Татьяна Владимировна.
П-я 1 А В Из точки М проведен перпендикуляр МВ к плоскости прямоугольника АВСD. Докажите, что треугольники АМD и МСD прямоугольные. D С М П-Р Н-я 1 Н-я.
Определение.a a S A F N D H Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Прямая.
Две прямые в пространстве называются перпендикулярным и, если угол между ними равен 90°. Перпендикулярность прямых а и b обозначается так: а b. Перпендикулярные.
Угол между прямыми. Угол между прямыми a b Пусть α - тот из углов, который не превосходит любого из трех остальных углов. Тогда говорят, что угол между.
Транксрипт:

О 1 АВ ПРИМЕНЕНИЕ ПРИЗНАКА ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ

ЦЕЛИ УРОКА Научиться применять определение и признак перпендикулярности прямой и плоскости, решать задачи на доказательство. Развивать пространственное воображение, логическое мышление. Учиться четко и ясно, логически последовательно излагать свои мысли. Учиться объективно оценивать свою работу.

a a

a a

q p a a

a b a b a II b

a II

A OВ Докажите, что АО СС

ABCD и ВMNС – два прямоугольника. Доказать: ВС (СDN) А В С D M N Доказать: ВС DN

ABCD – прямоугольник. В треугольнике ВСМ сторона ВС = 6, СМ = 8, ВМ = 10. Доказать: ВС (СDN) А В С D M

Прямая МВ перпендикулярна к сторонам АВ и ВС треугольника АВС. Определите вид треугольника МВD, где D – произвольная точка прямой АС. А С ВD М

В М O С Через точку О пресечения диагоналей параллелограмма АВСD проведена прямая ОМ так, что МА = МС, МВ = МD. Докажите, что прямая МО перпендикулярна плоскости параллелограмма. А D

С B A D В тетраэдре DABC точка М – середина BС, АB = АС, DВ = DC. Докажите, что плоскость треугольника АDМ перпендикулярна к прямой ВС. M

В С А М 6 4 АD МСD АD МD,АD МС АВСD – параллелограмм. АD = 4, DС = 6, МС перпендикулярно плоскости АВС, МD АD. Найдите площадь параллелограмма. D

D А АВСD – прямоугольник. Отрезок АЕ перпендикулярен плоскости АВС. ВЕ = 15, ЕС = 24, ЕD = 20. Докажите, что треугольник ЕDС прямоугольный и найдите АЕ. C В Е СD (AED) СD AD, СD АЕ

С Точка А принадлежит окружности, АК – перпендикуляр к ее плоскости, АК = 1 см, АВ – диаметр, ВС – хорда окружности, составляющая с АВ угол Радиус окружности равен 2 см. Докажите, что треугольник КСВ прямоугольный, и найдите КС. В А К СВ (АКС) СВ АК СВ СА