Теория Графов Первая работа по теории графов принадлежит Леонарду Эйлеру (1736 год), хотя термин «граф» впервые ввел в 1936 году венгерский математик Денеш.

Презентация:



Advertisements
Похожие презентации
ГРАФЫ … ГРАФЫ ??? ГРАФЫ ??? ГРАФЫ !!! ГРАФЫ !!!. Задача 1 Между девятью планетами Солнечной системы установлено космическое сообщение. Рейсовые ракеты.
Advertisements

ЕГО ВЕЛИЧЕСТВО ГРАФ. Введение С дворянским титулом «граф» эту тему связывает только общее происхождение от латинского слова «графио» - пишу. ГРА Ф ИО.
Графы Автор: Баум Маргарита Муниципальное автономное общеобразовательное учреждение Тисульская средняя общеобразовательная школа 1 Руководитель: Пода Надежда.
Введение Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем.
Графы Автор: Баум Маргарита Муниципальное автономное общеобразовательное учреждение Тисульская средняя общеобразовательная школа 1 Руководитель: Пода Надежда.
Применение теории графов Работу выполнила ученица 8 класса Гончарова Дарья.
Графы Цели урока Повторить определения, теоремы теории графов Научиться строить графы Научиться применять графы к решению практических задач.
Определение графа Фигура, образованная конечным набором точек плоскости и отрезков, соединяющих некоторые из этих точек, называется плоским графом, или.
Научно -исследовательская работа Авторы: Быстрякова Наталья, Шайахметова Алина ученицы 9 В класса МАОУ « СОШ9» г.Нурлат, РТ Руководитель: Мустафина Наталья.
Проект: «Графы». Цели проекта: изучить теорию «Граф», изучить теорию «Граф», развить навыки самостоятельной работы, развить навыки самостоятельной работы,
Рисунок одним росчерком пера. Проект по элективному курсу по математике «Круги Эйлера. Графы.» на тему Выполнила ученица 9Б класса средней школы 9 Миронова.
Домашнее задание «Применение графа» ВСПОМНИМ… Граф Простейшая модель системы.Отображает элементарный состав системы и структуру связей Сеть Граф с возможностью.
Применение графов. С помощью графов упрощается решение математических задач, головоломок, задач на смекалку. дальше.
Графы Построить конверт не отрывая карандаша от бумаги и не проводя по одной линии дважды.
(вычерчивание фигуры непрерывной линией) Презентация выполнена учеником 6 «А» класса Курасовым Александром Презентация выполнена учеником 6 «А» класса.
ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ И ЕГО ЭЛЕМЕНТОВ. ГРАФОМ G = (V, X) НАЗЫВАЕТСЯ ПАРА ДВУХ КОНЕЧНЫХ МНОЖЕСТВ: МНОЖЕСТВО ТОЧЕК И МНОЖЕСТВО ЛИНИЙ, СОЕДИНЯЮЩИХ.
Фигура (граф), которую можно начертить не отрывая карандаш от бумаги, называется уникурсальной.
Муниципальное бюджетное общеобразовательное учреждение Кабановская СОШ Как измерить расстояние между родственниками Автор: Ученица 5б класса Балабойко.
Не говори, чему учили, а скажи, что узнал. (Пословица)
Решение задач с помощью графов. Кенигсбергские мосты Можно ли обойти все Кенигсбергские мосты, проходя только один раз через каждый из этих мостов?
Транксрипт:

Теория Графов Первая работа по теории графов принадлежит Леонарду Эйлеру (1736 год), хотя термин «граф» впервые ввел в 1936 году венгерский математик Денеш Кениг.Леонарду Эйлеру (1736 год) Денеш Кениг

Области применения теории графов С помощью графов часто упрощалось решение задач, сформулированных в различных областях знаний: в автоматике, электронике, физике, химии и др. С помощью графов изображаются схемы дорог, газопроводов, тепло- и электросети. Помогают графы в решении математических и экономических задач

Определение графа Графами были названы схемы, состоящие из точек и соединяющих эти точки отрезков прямых или кривых.

Пентаграмма – полный граф Еще один пример графа – пентаграмма. Пентаграмма – это правильный невыпуклый пятиугольник, она же правильный звездчатый пятиугольник Чаще пятиугольник изображают вписанным в окружность. В таком случае пентаграмма будет примером полного графа.

Ребра и вершины графа Точки А, Б, В, Г, Д называются вершинами графа, а отрезки линий, соединяющие эти точки ребрами графа. При изображении графов на рисунках или схемах отрезки могут быть прямолинейными или криволинейными; Длины отрезков и расположение точек произвольны. Например, все три фигуры на рисунке изображают один и тот же граф.

Изобразите с помощью графа договорные отношения между предприятиями А, Б, В, Г, Д, Е, если к рассматриваемому моменту: предприятие А установило договорные отношения со всеми другими предприятиями; Б установило с Г и Д; В установило со всеми предприятиями, кроме предприятия Е. А Б В Г Д Е

Степень вершины Cтепень вершины- –количество ребер графа, исходящих из этой вершины. На рисунке изображен граф с пятью вершинами. Степень вершины А обозначим Ст.А. На рисунке : Ст.А = 1, Ст.Б = 2, Ст.В = 3, Ст.Г= 2, Ст.Д= 0. Вершина называется нечетной- если степень этой вершины нечетная, четной если степень этой вершины четная.

Закономерности Закономерность1. Степени вершин полного графа одинаковы, и каждая из них на 1 меньше числа вершин этого графа. Закономерность 2. Сумма степеней вершин графа число четное, равное удвоенному числу ребер графа. Закономерность 3 Число нечетных вершин любого графа четно.

Самая известная задача,связанная с теорией графов – о кенигсбергских мостах. К XVIII веку через реку, на которой стоял город Кенигсберг (ныне Калининград), было построено 7 мостов, которые связывали с берегами и друг с другом два острова, расположенные в пределах города (см.рисунок) Кенигсбергские мосты

Задача заключается в следующем: нужно пройти (если это возможно) по всем семи мостам так, чтобы на каждом из них побывать лишь по одному разу и вернуться к тому месту, откуда начал маршрут.

Решение Леонарда Эйлера Прохождение по всем мостам при условии, что нужно на каждом побывать один раз и вернуться в точку начала путешествия, на языке теории графов выглядит как задача изображения «одним росчерком» графа, представленного на рисунке. Но, поскольку граф на этом рисунке имеет четыре нечетные вершины, то, согласно закономерности 7. такой граф начертить «одним росчерком» невозможно. Значит, и пройти по кенигcбергским мостам, соблюдая заданные условия, нельзя.

Несколько задач… Аркадий, Борис. Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано? Между планетами введено космическое сообщение по следующим маршрутам: З-К, П-В, З-П, П-К, К-В, У-М, М-С, С-Ю, Ю-М, М-У. Можно ли добраться с З до М? На уроке математики присутствуют 5 человек - Катя, Кирилл, Артем, Алена, Дима. Учительница хочет рассадить ребят так, чтобы Кирилл сидел одни, а остальные мальчики сидели с девочками. Какие варианты возможны?

Источники: Методические материалы, присланные организаторами ДООМ - электронный учебник по теории графов.