Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной. Независимую переменную иначе называют аргументом, а о зависимой говорят, что она является функцией от этого аргумента. Все значения, которые принимает независимая переменная, образуют область определения функции.
Существует несколько способов задания функции: 1.С помощью таблицы. 2.Графический. 3.С помощью формулы. Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.
Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где x – независимая переменная, k и b – заданные числа. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки в координатной плоскости и провести через них прямую. Прямая пропорциональность – функция вида у=кх, где х – независимая переменная, к – не равное нулю число. Графиком прямой пропорциональности является прямая, проходящая через начало координат.
Построение графика линейной функции Для построения графика линейной функции необходимо: - выбрать любые два значения переменной х (аргумента), например 0 и 1; - вычислить соответствующие значения переменной y (функции). Полученные результаты удобно записывать в таблицу x01 y - полученные точки А и В изображаем в системе координат; - соединяем по линейке точки А и В. Пример. Построим график линейной функции y = -3·x+6. x01 y63
Обратной пропорциональностью называется функция, которую можно задать формулой вида у=k/х, где х - независимая переменная и k - не равное нулю число. Областью определения такой функции является множество всех чисел, отличных от нуля. Если величины x и y обратно пропорциональны, то функциональная зависимость между ними выражается уравнением y = k / x, где k есть некоторая постоянная величина. График обратной пропорциональности есть кривая линия, состоящая из двух ветвей. Этот график называют гиперболой. В зависимости от знака k ветви гиперболы расположены либо в 1 и 3 координатных четвертях (k положительно), либо во 2 и 4 координатных четвертях (k отрицательно). На рисунке изображен график функции y = k/х, где k – отрицательное число.
ЧАСТНЫЕ СЛУЧАИ ЛИНЕЙНОЙ ФУНКЦИИ. y=kx, k0, b=0 - прямая пропорциональность,. График - прямая, проходящая через начало координат; y=b, k=0, b0. (b>0, выше оси OX; b
k>0k
ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ. y=kx+b1, y=kx+b2 - графики параллельны. y=k1x+b, y=k2x+b - графики пересекаются в одной точке (x;b).