Две прямые в пространстве называются перпендикулярным и, если угол между ними равен 90°. Перпендикулярность прямых а и b обозначается так: а b. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися. На этом рисунке перпендикулярные прямые а и b пересекаются, а перпендикулярные прямые На этом рисунке перпендикулярные прямые а и b пересекаются, а перпендикулярные прямые а и с скрещивающиеся а и с скрещивающиеся
Дано: а b и а с. Доказать: b c. Через произвольную точку М пространства, не лежащую на данных прямых, проведём прямые а и с. Т.к. а с, то АМС =90° Т.к. а b, а МА, то b МА. Итак, b МА, с МС, Доказательство: Через произвольную точку М пространства, не лежащую на данных прямых, проведём прямые а и с. Т.к. а с, то АМС =90° Т.к. а b, а МА, то b МА. Итак, b МА, с МС, АМС = 90°, т. е. b c. Лемма доказана. АМС = 90°, т. е. b c. Лемма доказана.
B А C D В тетраэдре АВСD ВС АD. Докажите, что АD MN, где М и N – середины ребер АВ и АС. M N II
Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Перпендикулярност ь прямой a и плоскости α обозначается так: а α.
Дано : а а 1, а α. Доказать: а 1 α Доказательство: Проведем какую-нибудь прямую х в плоскости α. Так как а перпендикулярна α, то а перпендикулярна х. По лемме о перпендикулярности двух параллельных прямых к третьей а 1 перпендикулярна х. Таким образом, прямая а 1 перпендикулярна к любой прямой, лежащей в плоскости α, т.е. а 1 перпендикулярна α. Теорема доказана.