Системы линейных уравнений.. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты системы, i=1,…,m;

Презентация:



Advertisements
Похожие презентации
Системы линейных уравнений.. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты системы, i=1,…,m;
Advertisements

Системы линейных уравнений. Метод Гаусса. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты.
Системы n линейных уравнений с n неизвестными. Определение: Определение. Система n уравнений с n неизвестными в общем виде записывается следующим образом:
Системы линейных алгебраических уравнений (СЛАУ).
§ 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы A называется ее базисным минором, если он отличен от нуля, а все миноры матрицы A более высокого порядка.
2. Системы линейных уравнений Элементы линейной алгебры.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Системы m линейных уравнений с n неизвестными. Определение: Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
§2 РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 2.1 Системы линейных уравнений Линейной системой m уравнений с n неизвестными х 1, х 2,…х n называется.
Системы уравнений Основные методы решения. Системы уравнений f(x;y)=0 g(x;y)=0 Система уравнений.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 3. Тема: Системы линейных уравнений: методы решения.
Презентация "Методы решения системы линейных уравнений"
Нахождение фундаментального решения. Подготовила: Колосова Светлана. Принял: Адашев Д.К.
Тема 1 «Элементы линейной и векторной алгебры» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Понятия.
Системы линейных уравнений Лекция 3. Пусть задана система n линейных уравнений с n неизвестными.
1 3. Системы линейных уравнений. Леопо́льд Кро́некер.
Матрицы Элементарные преобразования и действия над матрицами made by aspirin.
Линейная алгебра Определители второго порядка Системы из двух линейных уравнений с двумя неизвестными Определители n – ого порядка Методы вычисления определителей.
Метод Гаусса решения систем линейных уравнений. Рассмотрим систему m линейных уравнений с n неизвестными:
Система m линейных уравнений с n переменными в общем случае имеет вид: 1.
Транксрипт:

Системы линейных уравнений.

Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты системы, i=1,…,m; j=1,…,n b i - свободные члены. (*)

Решением системы (*) называется такой набор чисел (с 1, с 2,…, с n ), что при его подстановке в систему вместо соответствующих неизвестных (с 1 вместо х 1, …, с n вместо х n ) каждое из уравнений системы обращается в тождество. Если система (*) имеет хотя бы одно решение, то она называется совместной; система, не имеющая ни одного решения, называется несовместной.

Система называется определенной, если она имеет единственное решение; и неопределенной, если она имеет более одного решения. В случае неопределённой системы каждое её решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Если b 1 =b 2 =…=b m =0, то система называется однородной; в противном случае она называется неоднородной. Две системы называются эквивалентными или равносильными, если любое решение одной из них является также решением другой, т.е. если они имеют одно и то же множество решений. (любые две несовместные системы считаются эквивалентными)

Элементарными преобразованиями линейной системы называются следующие преобразования: - перестановка уравнений системы; - умножение или деление коэффициентов и свободных членов на одно и то же число, отличное от нуля; - сложение и вычитание уравнений; - исключение из системы тех уравнений, в которых все коэффициенты и свободные члены равны нулю.

Систему (*) можно записать в матричной форме: АХ=В, где матрица коэффициентов системы; матрица-столбец (вектор-столбец) неизвестных матрица-столбец (вектор-столбец) свободных членов

1. Решение систем линейных уравнений при помощи обратной матрицы. матрица-столбец (вектор-столбец) неизвестных матрица-столбец (вектор-столбец) свободных членов основная матрица системы

Пусть detA 0, тогда А -1

Решить систему линейных уравнений при помощи обратной матрицы: А В

Ответ: (-2; 1; 2) то есть:

2. Решение систем линейных уравнений по формулам Крамера. Система n уравнений с n неизвестными, определитель которой отличен от нуля, всегда имеет решение и притом единственное. Оно находится следующим образом: значение каждого из неизвестных равно дроби, знаменателем которой является определитель системы, а числитель получается из определителя системы заменой столбца коэффициентов при искомом неизвестном на столбец свободных членов.

Дана система n линейных уравнений с n неизвестными х 1, х 2, …, х n:

Систему можно записать в матричной форме: АХ=В, где матрица коэффициентов системы; матрица-столбец (вектор-столбец) неизвестных матрица-столбец (вектор-столбец) свободных членов

пусть

разложение det по элементам 1-го столбца Итак: столбец свободных членов

разложение det по элементам 2-го столбца Итак: столбец свободных членов

разложение det по элементам n-го столбца Итак: столбец свободных членов То есть:

Формулы Крамера где Δ =detA 0, Δ х k - определитель, получающийся из detA заменой к-го столбца на столбец свободных членов.

Решить систему линейных уравнений по формулам Крамера:

Ответ: (-2; 1; 2)