Пособие предназначено для школьников и абитуриентов, которые хотят научиться решать геометрические задачи. В пособии предлагается технология решения таких задач и приводятся многочисленные примеры ее применения. Особое внимание уделяется формированию и использованию учащимися базы знаний, используемой в процессе решения учебных задач и в самостоятельных теоретических исследованиях. Для облегчения формирования базы знаний в пособии приведены основные теоретические сведения. Год издания 2011.
Этот подход позволяет выделить основные этапы решения задачи и последовательно преодолеть возникающие трудности по аналогии с поэтапной сборкой сложного изделия на конвейере. ЗАМЕЧАНИЕ. Знание, а главное, понимание алгоритмов решения стандартных задач не отменяет самостоятельное творчество. Оно экономит время и дает инструмент, который позволяет осуществлять творческий процесс на качественно более высоком уровне.
Использование метода укрупнения дидактических единиц П.М. Эрдниева Применение разработанного П. М. Эрдниевым метода укрупнения дидактических единиц (УДЕ) базируется на одновременном рассмотрении логически различных элементов, обладающих в то же время информационной общностью. Такой подход позволяет сформировать «стереоскопический» образ изучаемого объекта. Он стимулирует образование в мозгу функциональных систем, т.е. ансамблей нейронов, «специализирующихся» на решении сходных познавательных задач. Отказ при использовании УДЕ от традиционного «квантования» учебного материала способствует тому, что его запоминание приобретает не механический (эрудиционный), а ассоциативный характер. Таким образом, наряду с накоплением знаний (накоплением информации) идет процесс обогащения мышления связями между знаниями, то есть повышается качество переработки информации.
Формирование семейств модифицируемых многопараметрических задач Данная методика предусматривает создание модифицируемых многопараметрических заданий по математике, в которых осуществляется циклическая замена известных и неизвестных величин. Методика ориентирована на формирование целостного мировосприятия и интеллектуальное развитие школьников. Предложенный подход к формированию модифицируемых учебных заданий лежит в русле метода укрупнения дидактических единиц (УДЕ). Вслед за создателем метода УДЕ П. М. Эрдниевым мы обращаем внимание на необходимость рассмотрения всего блока заданий, относящихся к данной проблеме, в компактном временном промежутке. В этом случае многообразные связи, возникающие в мозгу ученика в процессе работы, закрепляются в виде единой комплексной системы.
Последовательное применение принципа «чайника» Этот принцип состоит в сведении данной задачи к той, решать которую мы уже научились.
Проблемный подход к организации повторения курса геометрии Использование проблемного метода приводит ученика от пассивного потребления готовых истин, излагаемых учителем, к участию в их установлении. Это способствует лучшему запоминанию и, что особенно важно, формированию личностно-ценностного отношения к изучаемому материалу. Подумаешь, Америку открыл! Еще в пеленках это мы знавали!… А я один, как клад, ее отрыл И позабыть уже смогу едва ли. Подумаешь, Америку открыл! Еще в пеленках это мы знавали!… А я один, как клад, ее отрыл И позабыть уже смогу едва ли. Как я добыл ее! Я смертный пот Стирал ладонью. Рот был сух от жажды. Я рыл и рыл… Владеет ею тот, Кто сам, один, добыл ее однажды. Как я добыл ее! Я смертный пот Стирал ладонью. Рот был сух от жажды. Я рыл и рыл… Владеет ею тот, Кто сам, один, добыл ее однажды. Она во мне. Я жил, ее тая. Я, стиснув зубы, в муках, на пределе Ее добыл. Вот истина моя!.. Вы ж до сих пор банальностью владели. Она во мне. Я жил, ее тая. Я, стиснув зубы, в муках, на пределе Ее добыл. Вот истина моя!.. Вы ж до сих пор банальностью владели. Евгений Винокуров.