Редкие B-распады на установке ATLAS Н.В.Никитин (к Лекциям по B-физике) 18.04.2005 1.

Презентация:



Advertisements
Похожие презентации
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
Advertisements

1 Another useful model is autoregressive model. Frequently, we find that the values of a series of financial data at particular points in time are highly.
Monitoring system of the LHCb electromagnetic calorimeter NEC2007, Varna, Bulgaria Ivan Korolko (ITEP Moscow)
The reconstruction of coding scheme through errors distributions Lyakhovetskii V.A., Karpinskaya V.Ju*, Bobrova E.V. Pavlov Institute of Physiology of.
Comparative Analysis of Phylogenic Algorithms V. Bayrasheva, R. Faskhutdinov, V. Solovyev Kazan University, Russia.
1 Ю. Щеглов, А.Дзюба, А.Воробьёв, Н.Сагидова ПИЯФ Статус поиска распада Bs 2µ в LHCb. Новогодняя научная сессия ОФВЭ 27 Декабря 2011 µ µ 12/27/2011Юрий.
SIR model The SIR model Standard convention labels these three compartments S (for susceptible), I (for infectious) and R (for recovered). Therefore, this.
Here are multiplication tables written in a code. The tables are not in the correct order. Find the digit, represented by each letter.
Time-Series Analysis and Forecasting – Part IV To read at home.
Special relativity. Special relativity (SR, also known as the special theory of relativity or STR) is the physical theory of measurement in an inertial.
PAT312, Section 21, December 2006 S21-1 Copyright 2007 MSC.Software Corporation SECTION 21 GROUPS.
REFERENCE ELEMENTS 64. If your REFERENCE ELEMENTS toolbar is not in view and not hidden, you can retrieve it from the toolbars menu seen here. 65.
Combination. In mathematics a combination is a way of selecting several things out of a larger group, where (unlike permutations) order does not matter.
Benford Benford's law, also called the first-digit law, states that in lists of numbers from many (but not all) real-life sources of data, the leading.
Linux Daemons. Agenda What is a daemon What is a daemon What Is It Going To Do? What Is It Going To Do? How much interaction How much interaction Basic.
Correlation. In statistics, dependence refers to any statistical relationship between two random variables or two sets of data. Correlation refers to.
S15-1 PAT325, Section 15, February 2004 Copyright 2004 MSC.Software Corporation SECTION 15 OPTIMIZATION OF COMPOSITES USING MSC.NASTRAN.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Building a Simple Ethernet Network Understanding How an Ethernet LAN Works.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
Electromagnetism. Electromagnetism is the branch of science concerned with the forces that occur between electrically charged particles. In electromagnetic.
Транксрипт:

Редкие B-распады на установке ATLAS Н.В.Никитин (к Лекциям по B-физике)

Эксперимент LHC LHC – Large Hadron Collider – Большой адронный коллайдер строится в настоящее время в CERNе: pp-столкновения (14 ТэВ). Планируемое начало работы: весна 2007 г. Четыре детектора: ATLAS, CMS – для поиска бозона Хиггса, суперсимметрии и других задач, в том числе исследовании свойств b-адронов; LHCb – оптимизирован под B-физику; ALICE – для исследования свойств КГП.

Мы сконцентрируемся на поиске редких В-распадов на установке ATLAS только потому, что группа МГУ активно принимает участие в данной работе. Следует иметь ввиду, что коллаборации CMS и, особенно, LHCb имеют не менее обширную программу по поиску редких распадов

Introduction - I Physics: b d, s transitions (FCNC) are forbidden at the tree level in SM and occur at the lowest order through one-loop-diagrams penguin and box. Main points for study: a) The good test of SM and its possible extensions - SUSY, Two Higgs-doublet, LR, Extra Dimensions; b) Information of the long-distance QCD effects; c) Determination of the V tdand V ts; d) Some of rare decays as BG to other rare decays (for example: B 0 d π 0 µ + µ - as BG to B 0 s µ + µ - γ ). 2

Introduction - II Branching Ratios Hierarchi in SM: Br(B 0 d µ + µ - ) ~ a few * Br(B 0 d µ + µ - γ ) ~ a few * Br(B 0 s µ + µ - ) ~ a few * Br(B 0 s µ + µ - γ ) ~ a few * Br(B 0 d π 0 µ + µ - ) ~ a few * Br(B 0 d ρ 0 µ + µ - ) ~ a few * Br(B 0 d K µ + µ - ) = (4.8 ± 1.2) * (BaBar, Belle, 02) Br(B 0 s φ µ + µ - ) ~ a few * Br(B 0 d K * µ + µ - ) = (1.17 ± 0.33) * (BaBar, Belle, 03) Br(B 0 d K * γ) = (4.3 ± 0.4) * (CLEO, 93) 3

Which new measurements can LHC make comparing with B-factories? a) The rare decays of B 0 s – meson (B 0 s φγ, B 0 s φ µ + µ -, B 0 s µ + µ - γ and B 0 s µ + µ - ) and Λ b - baryon; b) Differencial distributions for rare semileptonic B- meson decays (dimuon-mass spectra, forward- backward asymmetries) – very sensitive to the SM extensions; c) Branching fractions of rare muonic and rare radiative muonic B-meson decays – good sensitivity to the SM extensions. 4

The basic theoretical description -I Effective Hamiltonian for b d,s transition: H eff (b q)~ G F V * tq V tb C i (µ) O i (µ), includes the lowest EW-contributions and perturbative QCD corrections for Wilson coefficients C i (µ). µ - scale parameter ~ 5 GeV : separates SD (perturba- tive) and LD (nonperturbative) contributions of the strong interactions. SM NLO: A.Buras, M.Munz, PRD52, p.182, 1995 SM NNLO: C.Bobeth et al., JHEP 0404, 071, 2004 MSSM NNLO: C.Bobeth et al., hep-ph/

The basic theoretical description -II O i (µ) – set of the basic operators (specific for each model: SM, MSSM, LR and others); LD (nonperturbative) contribution of the strong inte- ractions are contained in the hadronic matrix elements: and are described in the terms of relativistic invariant function - transition formfactors. Need the nonperturbative methods (SR, QM, Lat). 6

The accuracy of calculations Stability of the Wilson coefficients to the choice of m t and μ [m b /2, 2m b ]: SM NLO: approximately 15% ; SM NNLO: approximately 6% - 7% ; MSSM NNLO: 30% depends from the parameters set. Accuracy of the nonperturbative calculations: depends on a method, but its not less, than 15%. For SM calculations – NLO, for MSSM – NNLO. 7

Simulations of rare B-decays for ATLAS detector 8

B 0 d,s µ + µ - decays in ATLAS Points for study in ATLAS: Branching ratio - sensitive to the SUSY. Simulations: Full Inner detector simulation and reconstruction at low and nominal LHC luminosity 1) for TDR layout signal + background (ATLAS TDR 15, Vol.II, 1999) 2) for Initial layout only signal (ATL-COM-PHYS ). 3) signal + background in DC2. Results: Using SM teoretical predictions: Br(B 0 d, µ + µ - ) 1.5* and Br(B 0 d, µ + µ - ) 3.5*10 -9 we obtaned the following sensitivities for ATLAS After 3 year LHC work at L=10 33 cm -2 s -1 (30 fb -1 ) will be expected B 0 d : 4 signal ev., B 0 s : 27 signal ev., 93 BG ev. common to both After 1 year LHC work at L=10 34 cm -2 s -1 (100 fb -1 ) will be expected B 0 d : 14 signal ev., B 0 s : 92 signal ev., 660 BG ev. common to both We expect the 3*10 10 sensitivities at CL 95% for rare leptonic decays. 9

B 0 d K*(892)µ + µ - decay at ATLAS Points for study in ATLAS: Branching ratio - sensitive to the SUSY ; Differencial distributions (dimuon-mass spectra, A FB ) – very good sensitivity to the SUSY. Simulations: Full ATLAS Inner detector simulation and reconstruction at low luminosity (ATLAS TDR 15, Vol.II, 1999) using theoretical matrix element from paper D.Melikhov, N.Nikitin, S.Simula, PRD57, 6814, Results of simulation: After 3 year LHC work at L=10 33 cm -2 s -1 (30 fb -1 ) will be expected ~2000 signal events at 290 BG events 10

B d K * B s Preliminary results Non-optimized offline cuts, resolution (>100 MeV/c 2 ) could be improved. Using DC1 simulation tools: estimations including trigger and off-line selection cuts for 1year LHC work at L=2*10 33 cm –2 s -1 (20fb -1 ) : B s : 3200 signal ev., S/BG > 7; B d K *0 : 8500 signal ev., S/BG > 5. BG rejection under investigation combining π 0 / γ rejection cuts, kinematics and angle between B 0 and K + at K * rest frame cuts. Radiative penguins in ATLAS Points for study in ATLAS: Branching for B s, polarization measurements and CP-violation effects. 11

Baryonic rare decay of Λ b Λ µ + µ - Points for study in ATLAS: Branching ratio - sensitive to the SUSY ; FB asymmetry - very sensitive to the SUSY. Generation procedure: EvtGen used to generate events using amplitudes from works ( C-H.Chen, C.Q.Geng, PRD64, , 2001 ) and ( T.M.Aliev et.al., NPB649, p , 2003 ). Results of DC1-simulation: At Br(Λ b Λ (p π - ) µ + µ - ) ~ 2·10 -6 after 1 year LHC work at L=2*10 33 cm -2 s -1 (20 fb -1 ) will be expected ~ 1800 events of the decay Λ b Λ (p π - ) µ + µ -. 12

B 0 d π 0 µ + µ - as BG to B 0 d,s µ + µ - γ and B 0 d,s µ + µ - decays |η(μ)| 6 GeV, π 0 γ γ, p T (π 0 ) < 4GeV The decay B 0 d π 0 µ + µ - are essential background for the decay B 0 d,s µ + µ - (γ) at the particle level simulation. B 0 s µ + µ - B 0 d µ + µ - B 0 d π 0 µ + µ - Number of events Mµµ Number of events B 0 s µ + µ - γ B 0 d µ + µ - γ B 0 d π 0 µ + µ - Mµµ 16

SUSY in rare B-decays at ATLAS detector

SUSY: main motivations for study in rare B-decays I) Many kinds of heavy (m > 1 TeV) SUSY particles. II) Only lightest of these particles can be detected on LHC. III) Other SUSY-particles give the tiny contributions as virtual particles in SM processes.To find the information on such particles it is necessary to choose the decays : a) where SM contributions are suppressed as much as possible; b) QCD nonperturbative corrections well known; c) branchings can be measured in ATLAS. Rare B 0 d,s and Λ b decays are IDEAL CHOICE for that! 18

MSSM for B 0 d,s µ + µ - decays and ATLAS sensitivity C.Bobeth et al., PRD66, , (2002) The B 0 d,s µ + µ - barnchings as functions of charge Higgs boson mass M H for two choice the tan β. 19 tan β = 50 tan β = 60 SM 95% CL for ATLAS sensitivity Br(B 0 q µ + µ - ) x 10 8

MSSM in B K * (892) µ + µ - decay and ATLAS precision Sensitivity of A FB to the choice of the Wilson coefficients in one MSSM scenario: P.Cho, M.Misiak, D.Wyller, PRD54, p.3329, Three intervals for variable q 2 /M 2 B. If in the first interval the negative average asymmetry will be measured, it will be convincing demonstration of a SM exten- sions reality. Intervalmin max SM10%-14%-29% MSSM -17 – 5% %~ 30% ATLAS Accuracy 5% 4.5% 6.5% 20