Лекция 5 множественная регрессия и корреляция. Множественная регрессия широко используется в решении проблем спроса, изучении доходности акций, изучении.

Презентация:



Advertisements
Похожие презентации
Лекция 5 множественная регрессия и корреляция. Множественная регрессия широко используется в решении проблем спроса, доходности акций, изучение функции.
Advertisements

Лекция 3 множественная регрессия и корреляция. Уравнение множественной регрессии.
1 Множественная регрессия и корреляция. 2 Спецификация модели Уравнение множественной регрессии Цель множественной регрессии: –Построить модель с большим.
Лекция 6 множественная регрессия и корреляция. ( продолжение )
« Эконометрика » Тема 4. Множественная регрессия и корреляция. Лекция-визуализация 2 Время: 2 часа Уважаемые студенты! В процессе данного занятия Вы должны.
Лекция 6 множественная регрессия и корреляция. ( продолжение )
Линейная модель парной регрессии и корреляции. 2 Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального.
Парная линейная корреляция. Метод наименьших квадратов Задача: найти оценки параметров a и b такие, что остаток в i-ом наблюдении (отклонение наблюдаемого.
Лекция 4 множественная регрессия и корреляция. ( продолжение )
Теория статистики Корреляционно-регрессионный анализ: статистическое моделирование зависимостей Часть 1. 1.
Лекция 1 «Введение». Опр. эконометрика это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Специфической.
ЛЕКЦИЯ 8 КОРРЕЛЯЦИОННО- РЕГРЕССИОННЫЙ АНАЛИЗ. МОДЕЛИРОВАНИЕ СВЯЗЕЙ.
Лекция 1 Введение.. Опр. эконометрика это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов.
Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора.
Лекция 10 Временные ряды в эконометрических исследованиях.
«Технико-экономический анализ деятельности предприятия» Гиндуллина Тамара Камильевна, к.т.н., доцент кафедры АСУ.
Оценка существенности параметров линейной регрессии и корреляции.
Применение производной в экономике. Введение Производная функции играет важную роль в естественно-научных и инженерно- технических исследованиях. Для.
Использование понятия производной в экономике. Рассмотрим функциональную зависимость издержек производства о количества выпускаемой продукции. Обозначим:
КЛАССИЧЕСКИЙ РЕГРЕССИОННЫЙ АНАЛИЗ. ОБЩАЯ ЛИНЕЙНАЯ МОДЕЛЬ.
Транксрипт:

Лекция 5 множественная регрессия и корреляция.

Множественная регрессия широко используется в решении проблем спроса, изучении доходности акций, изучении функции издержек, производства, в макроэкономических расчетах.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

например Современная потребительская функция чаще всего рассматривается как модель вида С – потребление; у – доход; P – цена, M – наличные деньги; Z – ликвидные активы;

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели.

Условия включения факторов при построении множественной регрессии. 1. факторы должны быть количественно измеримы. Если необходимо включить модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность.

например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости учитывается место нахождения недвижимости: районы могут быть пронумерованы.

2. Факторы не должны быть интеркоррелированы.

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми.

Пусть в уравнении Тогда можно говорить, что параметр измеряет силу влияния фактора на результат при неизменном значении фактора.

Если же, то с изменением фактора фактор не может оставаться неизменным. Отсюда и нельзя интерпретировать как показатели раздельного влияния и на у.

Пример. Рассмотрим регрессию себестоимости: единицы продукции (руб.,у) от заработной платы работника (руб., ) и производительности его труда (единиц в час, ): = 0,95

Отбор факторов при построении множественной регрессии.

отбор факторов обычно осуществляется в две стадии на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют существенность включения в уравнение регрессии каждого из факторов.

Коэффициенты интеркорреляции – коэфф. корреляции между объясняющими переменными.

Считается, что две переменные явно коллинеарны, т.е находятся между собой в линейной зависимости, если r x i x j > 0,7. Поэтому одним из условий построения уравнения множественной регрессии является независимость действия факторов.

Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии.

Предпочтение отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточной тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Пусть, например, при изучении зависимости матрица парных коэффициентов корреляции оказалась следующей:

1 0,8 1 0,7 0,8 1 0,6 0,5 0,2 1

Очевидно, что факторы x и z дублируют друг друга. В анализ целесообразно включить фактор z, а не x, хотя корреляция z с результатом y слабее, чем корреляция фактора x с y (r yz

пример 1 0,3 1 0,7 0,75 1 0,6 0,5 0,8 1

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции была бы единичной матрицей т.е.

Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:

Таким образом, чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов.

Сравнивая между собой коэффициенты множественной детерминации факторов оставляем в уравнении факторы с минимальной величиной коэффициента множественной детерминации.

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться; и Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором.

Так, если для регрессии, включающих пять факторов, коэффициент детерминации составил 0,857 включение шестого фактора дало коэффициент детерминации 0,858, вряд ли целесообразно дополнительно включать в модель этот фактор.