Круги Эйлера при решении логических задач. Проект подготовил ученик 6а класса сш 22 Захаров Максим. Руководитель проекта учитель математики Кулагина К.К.

Презентация:



Advertisements
Похожие презентации
Круги Эйлера. 1 Каждый из 35 шестиклассников является читателем, по крайней мере, одной из двух библиотек: школьной и районной. Из них 25 человек берут.
Advertisements

Круги Эйлера в решении задач 6 Выполнила: Бандурина Елена 6«А» Учитель: Орлова О.А. МОУ-СОШ 9 г.Аткарск.
Круги Эйлера. Леонард Эйлер ИДЕАЛЬНЫЙ МАТЕМАТИК ИДЕАЛЬНЫЙ МАТЕМАТИК XVIII ВЕКА (к 300-летию со дня рождения) XVIII ВЕКА (к 300-летию со дня рождения)
Авторы: Сухова К.Г., Буланкина А.А.(учащиеся 10 класса) Руководитель: Ведунова Светлана Николаевна (учитель математики) МОУ СОШ 2 пгт. Серышево Амурская.
Тема урока : « Решение логических задач методом КРУГОВ Эйлера » Примеры решения задач.
Теория множеств Круги Эйлера. Круги́ Э́йлера геометрическая схема, при помощи которой можно изобразить несколько подмножеств вместе c их объединениями,
Множества. Операции над множествами. «Множество есть многое, мыслимое нами как единое» (основатель теории множеств – Георг Кантор).
Язык теории множеств Множество состоит из элементов. {-13;3} Множество состоит из чисел 3 и -13 Корни уравнения Х х = 39 {А,Е,Е,И,О,У,Ы, Э,Ю,Я}
Тумилович Нэлла Алексеевна, учитель математики МОУ СОШ 21 ЦПО г. Якутска Открытый урок по теме: « Решение логических задач с помощью кругов Эйлера »
Работу выполнил ученик 6 класса Руководитель :Учитель математики Кемаева Галина Серафимовна.
Пересечение и объединение множеств 8 класс. Что такое множество? Множество- это группа предметов, объектов или существ, обладающих одинаковыми свойствами.
Решение логических задач с помощью кругов Эйлера Занятие 1.
Введение Задачи с параметрами давно вошли в практику вступительных экзаменов по математике ведущих учебных заведений Задачи с параметрами давно вошли.
Автор: Сергеенкова И.М., ГБОУ Школа 1191, г. Москва Решение задач с помощью кругов Эйлера.
Понятия теории множеств П онятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким.
Множества. Операции над множествами.. 1. Пересечением двух множеств А и В называется множество А В, которое состоит из всех элементов, лежащих.
Автор Батырова Алия ученица 11 класса МОУ-СОШ с. Кировское.
Множества. Операции над множествами.. «Множество есть многое, мыслимое нами как единое» (основатель теории множеств – Георг Кантор).
Решение логических задач Грицунов Максим учащийся 6 «Б» класса МОУ гимназия 1 г. Белгород.
Лучший способ изучить что-либо - это открыть самому. (Д. Пойа)
Транксрипт:

Круги Эйлера при решении логических задач. Проект подготовил ученик 6а класса сш 22 Захаров Максим. Руководитель проекта учитель математики Кулагина К.К.

Цель работы: исследовать множества чисел с точки зрения теории множеств, а именно операций над множествами и их изображения с помощью кругов Эйлера. Кроме того, исследовать возможные решения задач с помощью кругов Эйлера, то есть с помощью операций над множествами чисел, данных в задачах. Объект исследования- множества. Объект исследования- множества. Предмет исследования- круги Эйлера. Предмет исследования- круги Эйлера.

Задачи: Задачи: Изучить понятие «числовые множества» и их изображения. Изучить понятие «числовые множества» и их изображения. Элементы множеств. Элементы множеств. Пересечение множеств. Пересечение множеств. Объединение множеств. Объединение множеств. Практическое применение кругов Эйлера при решении логических задач. Практическое применение кругов Эйлера при решении логических задач.

Ученый Леонард Эйлер придумал обозначать множества чисел кругами и они получили название «круги Эйлера». Один из величайших математиков петербургский академик Леонард Эйлер за свою долгую жизнь (он родился в 1707 году, а умер в 1783 году) написал более 850 научных работ. В одной из них и появились эти круги. А впервые он их использовал в письмах к немецкой принцессе. Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления». Позднее аналогичный прием использовал ученый Венн и его назвали «диаграммы Венна». Наряду с кругами применяются прямоугольники и другие фигуры. Один из величайших математиков петербургский академик Леонард Эйлер за свою долгую жизнь (он родился в 1707 году, а умер в 1783 году) написал более 850 научных работ. В одной из них и появились эти круги. А впервые он их использовал в письмах к немецкой принцессе. Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления». Позднее аналогичный прием использовал ученый Венн и его назвали «диаграммы Венна». Наряду с кругами применяются прямоугольники и другие фигуры.

Обозначим множество натуральных чисел с помощью кругов Эйлера так: N

Достаточно ли множества N для человека? Конечно, нет, так как не всегда можно выполнить вычитание во множестве натуральных чисел. Существуют и отрицательные числа, то есть числа … 3, 2, 1, каждое из которых противоположно какому – нибудь натуральному, Границей между натуральными числами и целыми отрицательными числами служит число 0, а все они вместе (натуральные, нуль и целые отрицательные) составляют новое числовое множество Z (от первой буквы немецкого слова zahl число) множество целых чисел. Достаточно ли множества N для человека? Конечно, нет, так как не всегда можно выполнить вычитание во множестве натуральных чисел. Существуют и отрицательные числа, то есть числа … 3, 2, 1, каждое из которых противоположно какому – нибудь натуральному, Границей между натуральными числами и целыми отрицательными числами служит число 0, а все они вместе (натуральные, нуль и целые отрицательные) составляют новое числовое множество Z (от первой буквы немецкого слова zahl число) множество целых чисел. Z N

Обитаемый остров" и "Стиляги" Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»? Решение Чертим два множества таким образом: 6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств. 15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров». 11 – 6 = 5 – человек, которые смотрели только «Стиляги». Получаем: Ответ. 5 человек смотрели только «Стиляги».

Любимые мультфильмы Любимые мультфильмы Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»? Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?

Решение В этой задаче 3 множества, из условий задачи видно, что все они пересекаются между собой. Получаем такой чертеж:

Учитывая условие, что среди ребят, которые назвали мультфильм «Волк и теленок» пятеро выбрали сразу два мультфильма, получаем:

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов». 13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок». Получаем: 38 – ( ) = 8 – человек смотрят только «Губка Боб Квадратные Штаны». Делаем вывод, что «Губка Боб Квадратные Штаны» выбрали = 17 человек. Ответ. 17 человек выбрали мультфильм «Губка Боб Квадратные Штаны».

«Мир музыки» В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры? Решение Изобразим эти множества на кругах Эйлера.

Теперь посчитаем: Всего внутри большого круга 35 покупателей, внутри двух меньших 35–10=25 покупателей. По условию задачи 20 покупателей купили новый диск певицы Максим, следовательно, 25 – 20 = 5 покупателей купили только диск Земфиры. А в задаче сказано, что 11 покупателей купили диск Земфиры, значит 11 – 5 = 6 покупателей купили диски и Максим, и Земфиры: Ответ: 6 покупателей купили диски и Максим, и Земфиры.

Заключение В результате работы над данной темой я пришел к следующим выводам: 1) Все множества чисел связаны между собой так, что каждое следующее, более объемное, включает в себя предыдущее множество полностью; 2) Любое натуральное число является элементом любого следующего множества 3) Применение кругов Эйлера (диаграмм Эйлера- Венна) позволяет легко решить задачи, которые обычным путем разрешимы лишь при составлении системы трех уравнений с тремя неизвестными.