Круги Эйлера при решении логических задач. Проект подготовил ученик 6а класса сш 22 Захаров Максим. Руководитель проекта учитель математики Кулагина К.К.
Цель работы: исследовать множества чисел с точки зрения теории множеств, а именно операций над множествами и их изображения с помощью кругов Эйлера. Кроме того, исследовать возможные решения задач с помощью кругов Эйлера, то есть с помощью операций над множествами чисел, данных в задачах. Объект исследования- множества. Объект исследования- множества. Предмет исследования- круги Эйлера. Предмет исследования- круги Эйлера.
Задачи: Задачи: Изучить понятие «числовые множества» и их изображения. Изучить понятие «числовые множества» и их изображения. Элементы множеств. Элементы множеств. Пересечение множеств. Пересечение множеств. Объединение множеств. Объединение множеств. Практическое применение кругов Эйлера при решении логических задач. Практическое применение кругов Эйлера при решении логических задач.
Ученый Леонард Эйлер придумал обозначать множества чисел кругами и они получили название «круги Эйлера». Один из величайших математиков петербургский академик Леонард Эйлер за свою долгую жизнь (он родился в 1707 году, а умер в 1783 году) написал более 850 научных работ. В одной из них и появились эти круги. А впервые он их использовал в письмах к немецкой принцессе. Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления». Позднее аналогичный прием использовал ученый Венн и его назвали «диаграммы Венна». Наряду с кругами применяются прямоугольники и другие фигуры. Один из величайших математиков петербургский академик Леонард Эйлер за свою долгую жизнь (он родился в 1707 году, а умер в 1783 году) написал более 850 научных работ. В одной из них и появились эти круги. А впервые он их использовал в письмах к немецкой принцессе. Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления». Позднее аналогичный прием использовал ученый Венн и его назвали «диаграммы Венна». Наряду с кругами применяются прямоугольники и другие фигуры.
Обозначим множество натуральных чисел с помощью кругов Эйлера так: N
Достаточно ли множества N для человека? Конечно, нет, так как не всегда можно выполнить вычитание во множестве натуральных чисел. Существуют и отрицательные числа, то есть числа … 3, 2, 1, каждое из которых противоположно какому – нибудь натуральному, Границей между натуральными числами и целыми отрицательными числами служит число 0, а все они вместе (натуральные, нуль и целые отрицательные) составляют новое числовое множество Z (от первой буквы немецкого слова zahl число) множество целых чисел. Достаточно ли множества N для человека? Конечно, нет, так как не всегда можно выполнить вычитание во множестве натуральных чисел. Существуют и отрицательные числа, то есть числа … 3, 2, 1, каждое из которых противоположно какому – нибудь натуральному, Границей между натуральными числами и целыми отрицательными числами служит число 0, а все они вместе (натуральные, нуль и целые отрицательные) составляют новое числовое множество Z (от первой буквы немецкого слова zahl число) множество целых чисел. Z N
Обитаемый остров" и "Стиляги" Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»? Решение Чертим два множества таким образом: 6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств. 15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров». 11 – 6 = 5 – человек, которые смотрели только «Стиляги». Получаем: Ответ. 5 человек смотрели только «Стиляги».
Любимые мультфильмы Любимые мультфильмы Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»? Среди школьников шестого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны», «Волк и теленок». Всего в классе 38 человек. «Белоснежку и семь гномов» выбрали 21 ученик, среди которых трое назвали еще «Волк и теленок», шестеро – «Губка Боб Квадратные Штаны», а один написал все три мультфильма. Мультфильм «Волк и теленок» назвали 13 ребят, среди которых пятеро выбрали сразу два мультфильма. Сколько человек выбрали мультфильм «Губка Боб Квадратные Штаны»?
Решение В этой задаче 3 множества, из условий задачи видно, что все они пересекаются между собой. Получаем такой чертеж:
Учитывая условие, что среди ребят, которые назвали мультфильм «Волк и теленок» пятеро выбрали сразу два мультфильма, получаем:
21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов». 13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок». Получаем: 38 – ( ) = 8 – человек смотрят только «Губка Боб Квадратные Штаны». Делаем вывод, что «Губка Боб Квадратные Штаны» выбрали = 17 человек. Ответ. 17 человек выбрали мультфильм «Губка Боб Квадратные Штаны».
«Мир музыки» В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры? Решение Изобразим эти множества на кругах Эйлера.
Теперь посчитаем: Всего внутри большого круга 35 покупателей, внутри двух меньших 35–10=25 покупателей. По условию задачи 20 покупателей купили новый диск певицы Максим, следовательно, 25 – 20 = 5 покупателей купили только диск Земфиры. А в задаче сказано, что 11 покупателей купили диск Земфиры, значит 11 – 5 = 6 покупателей купили диски и Максим, и Земфиры: Ответ: 6 покупателей купили диски и Максим, и Земфиры.
Заключение В результате работы над данной темой я пришел к следующим выводам: 1) Все множества чисел связаны между собой так, что каждое следующее, более объемное, включает в себя предыдущее множество полностью; 2) Любое натуральное число является элементом любого следующего множества 3) Применение кругов Эйлера (диаграмм Эйлера- Венна) позволяет легко решить задачи, которые обычным путем разрешимы лишь при составлении системы трех уравнений с тремя неизвестными.