4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ.

Презентация:



Advertisements
Похожие презентации
4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной.
Advertisements

Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Простейшие задачи векторной алгебры. Скалярное произведение векторов.
Элементы векторной алгебры Кафедра высшей математики ТПУ Лектор: доцент Тарбокова Татьяна В асильевна.
ВЕКТОРНАЯ АЛГЕБРА ВЕКТОРНАЯ АЛГЕБРА Основные определения.
Векторы Линейная комбинация векторов. Пусть даны векторы: Любой вектор вида называется линейной комбинацией данных векторов. Числа -коэффициенты линейной.
Векторная алгебра Основные понятия. Математическая величина Скалярная величина (характеризуется численным значением) Векторная величина (Характеризуется.
Презентация к уроку по геометрии (9 класс) по теме: Презентация "Координаты вектора"
Векторная алгебра Разложение вектора по базису Системы координат Декартова прямоугольная система координат Скалярное произведение векторов Свойства скалярного.
Элементы векторной алгебры.. Определение Совокупность всех направленных отрезков, для которых введены операции: - сравнения - сложения - умножения на.
Координаты вектора Пусть на плоскости задана прямоугольная система координат. Определим понятие координат вектора. Для этого отложим вектор так, чтобы.
Элементы векторной алгебры. Лекции 5-7. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. ТЕОРЕМА 9. 1) Если.
Элементы векторной алгебры. Векторы. Основные понятия. Отрезок [AB], у которого указаны его начальная точка A и конечная точка B, называется направленным.
Математика Лекция 3 (продолжение) Разработчик Гергет О.М.
В е к т о р ы. О с н о в н ы е п о н я т и я.. Вектором называется направленный отрезок. Обозначают векторы символами или, где А- начало, а B-конец направленного.
ВЕКТОРА В ПРОСТРАНСТВЕ ГЕОМЕТРИЯ 11 КЛАСС. Система координат в пространстве Если через точку пространства проведены три попарно перпендикулярные прямые,
Тема 2 «Скалярные и векторные величины» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Линейные операции.
§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Учебное пособие по дисциплине «Элементы высшей математики» Преподаватель: Французова Г.Н.
Глава 2. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ.. §1. Векторы. Основные определения. Величины, которые полностью определяются заданием их числовых значений (например,
Транксрипт:

4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ координат свободных векторов в декартовом прямоугольном базисе: ОПРЕДЕЛЕНИЕ. Прямую, на которой выбрано направление, называют осью.

ТЕОРЕМА 6. Координаты вектора ā V (2) (V (3) ) в декартовом прямоугольном базисе i, j (i, j, k) есть проекции этого вектора на соответствующие координатные оси.

§7. Простейшие задачи векторной алгебры Пусть на плоскости (в пространстве) задана декартова прямоугольная система координат. Выберем во множестве V (3) (V (2) ) декартов прямоугольный базис i, j, k (i, j).

ЗАДАЧА 2. Найти длину вектора, если известны его координаты в декартовом прямоугольном базисе. ЗАДАЧА 3. Известны координаты вектора. Найти координаты его орта.

Геометрический смысл координат орта вектора Это равенство называют основным тождеством для направляющих косинусов вектора.

ЗАДАЧА 4. Известны координаты концов отрезка. Найти координаты точки, которая делит отрезок в заданном отношении. Если λ > 0, то точка M 0 лежит между точками M 1 и M 2. В этом случае говорят, что точка M 0 делит отрезок M 1 M 2 во внутреннем отношении. Если λ < 0, то точка M 0 лежит на продолжении отрезка M 1 M 2. В этом случае говорят, что точка M 0 делит отрезок M 1 M 2 во внешнем отношении.