3. Взаимное расположение плоскостей В пространстве две плоскости могут: а) быть параллельны, б) пересекаться. Пусть уравнения плоскостей λ 1 и λ 2 имеют.

Презентация:



Advertisements
Похожие презентации
§ 4. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Advertisements

§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Прямая в пространстве.
3. Взаимное расположение прямых в пространстве В пространстве две прямые могут: а) быть параллельны, б) пересекаться, в) скрещиваться. Пусть прямые 1 и.
§ 3. Плоскость 1. Общее уравнение плоскости и его исследование ЗАДАЧА 1. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), перпендикулярно.
Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
3. Взаимное расположение прямых на плоскости На плоскости две прямые могут: а) быть параллельны, б) пересекаться. Пусть уравнения прямых 1 и 2 имеют вид:
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Плоскость.
{ общее уравнение прямой на плоскости – уравнение прямой с угловым коэффициентом – векторная и параметрическая формы уравнения прямой – совместное исследование.
Урок 2 Прямая на плоскости.. Взаимное расположение прямых на плоскости Прямые на плоскости могут совпадать, пересекаться или быть параллельными. 1. Пусть.
Урок1 Прямая на плоскости.. Виды уравнений прямой на плоскости. Прямая на плоскости может быть задана одним из следующих ниже уравнений. 1. Прямая на.
Аналитическая геометрия Часть 2 Геометрия в пространстве.
Аналитическая геометрия. Прямая на плоскости Уравнение прямой, проходящей через точку перпендикулярно вектору.
Аналитическая геометрия Лекции 8,9. Прямая на плоскости.
Прямая в пространстве Каноническое уравнение прямой Параметрическое уравнение прямой Уравнение прямой, как линии пересечения двух плоскостей Угол между.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
Плоскость и прямая в пространстве Лекция 10. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Тема 10 «Прямая в пространстве» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Переход от общих уравнений.
ПРЯМАЯ НА ПЛОСКОСТИ. Уравнение линии на плоскости. Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих.
Транксрипт:

3. Взаимное расположение плоскостей В пространстве две плоскости могут: а) быть параллельны, б) пересекаться. Пусть уравнения плоскостей λ 1 и λ 2 имеют вид: λ 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 λ 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 Тогда:

1) Пусть плоскости параллельны: Получаем, что плоскости λ 1 и λ 2 параллельны тогда и только тогда, когда в их общих уравнениях коэффициенты при соответствующих неизвестных пропорциональны, т.е.

2) Пусть плоскости пересекаются где знак плюс берется в том случае, когда надо найти величину острого угла, а знак минус – когда надо найти величину тупого угла.

Частный случай – плоскости перпендикулярны, т.е. критерий перпендикулярности плоскостей, заданных общими уравнениями.

4. Расстояние от точки до плоскости ЗАДАЧА 3. Пусть плоскость λ задана общим уравнением Ax + By + Cz + D = 0, M 0 (x 0 ;y 0 ;z 0 ) – точка, не принадлежащая плоскости λ. Найти расстояние от точки M 0 до плоскости λ.

§ 15. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных плоскостей, содержащих прямую. Тогда координаты любой точки прямой удовлетворяют одновременно обоим уравнениям, т.е. являются решениями системы Систему (1) называют общими уравнениями прямой в пространстве.

Другие формы записи уравнений прямой в пространстве – ПАРАМЕТРИЧЕСКИЕ и КАНОНИЧЕСКИЕ уравнения. ЗАДАЧА 1. Записать уравнение прямой в пространстве, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), параллельно вектору Вектор, параллельный прямой в пространстве, называют направляющим вектором этой прямой.

называют параметрическими уравнениями прямой в пространстве (в векторной и координатной форме соответственно).

Частным случаем канонических уравнений являются УРАВНЕНИЯ ПРЯМОЙ, ПРОХОДЯЩЕЙ ЧЕРЕЗ ДВЕ ЗАДАННЫЕ ТОЧКИ. Пусть прямая проходит через точки M 1 (x 1,y 1,z 1 ) и M 2 (x 2,y 2,z 2 ).

2. Переход от общих уравнений прямой к каноническим Пусть прямая задана общими уравнениями: Чтобы записать канонические (параметрические) уравнения этой прямой, необходимо найти ее направляющий вектор и координаты какой-нибудь точки M 0 (x 0 ;y 0 ;z 0 ) на прямой. а) Координаты точки M 0 – это одно из решений системы (1). б) Направляющий вектор