Свойства линейных операций над матрицами Свойства линейных операций над векторами
Глава III. Элементы теории линейных пространств и линейных операторов § 9. Понятие линейного пространства 1. Определение и примеры
Пусть L – некоторое множество, элементы которого можно складывать и умножать на числа из F (где F – множество рациональных, действительных или комплексных чисел). ОПРЕДЕЛЕНИЕ 1. Множество L называется линейным пространством над F если для любых элементов a,b,c L и для любых чисел, F выполняются условия: 1. a+b=b+a (коммутативность сложения элементов из L); 2. (a+b)+c=a+(b+c) (ассоциативность сложения элементов из L); 3. Во множестве L существует такой элемент o, что a+o=a. Элемент o называют нулевым элементом множества L; 4. Для любого элемента a L элемент –a L такой, что a+(–a)=o. Элемент –a называют противоположным к a; 5. ( a)=( )a (ассоциативность относительно умножения чисел); 6. ( + )a= a+ a (дистрибутивность умножения на элемент из L относительно сложения чисел); 7. (a+b)= a+ b (дистрибутивность умножения на число относительно сложения элементов из L); 8. 1a=a.
Линейное пространство над называют еще вещественным (действительными) линейным пространством, а над – комплексным. ЛЕММА 2 (простейшие свойства элементов линейного пространства). Пусть L – линейное пространство над F. Тогда для любых элементов a,b L и любых чисел, F справедливы следующие утверждения: 1) 0·a = o, ·o = o; 2) (– ) · a = ·(–a) = – a, (– ) ·(–a) = a; 3) ·(a–b) = a – b, ( – ) · a = a – a. Наряду с термином «линейное пространство» используется также термин «векторное пространство», а элементы линейного пространства принято называть векторами.
2. Подпространства линейных пространств Пусть L – линейное пространство над F, L 1 – непустое подмножество в L. ОПРЕДЕЛЕНИЕ. Говорят, что L 1 является подпространством линейного пространства L (или линейным подпространством), если оно само образует линейное пространство относительно операций, определенных на L. Если L 1 является подпространством линейного пространства L, то пишут: L 1 L ТЕОРЕМА 3 (критерий подпространства). Пусть L – линейное пространство над F, L 1 – непустое подмножество в L. L 1 является подпространством линейного пространства L тогда и только тогда, когда для любых элементов a,b L 1 и любого F выполняются условия: 1) a – b L 1 ; 2) ·a L 1.