3. Взаимное расположение прямых на плоскости На плоскости две прямые могут: а) быть параллельны, б) пересекаться. Пусть уравнения прямых 1 и 2 имеют вид: 1 : A 1 x + B 1 y + C 1 = 0 или y = k 1 x + b 1 2 : A 2 x + B 2 y + C 2 = 0 или y = k 2 x + b 2 1) Пусть прямые параллельны:
Получаем, что прямые 1 и 2 параллельны тогда и только тогда, когда в их общих уравнениях коэффициенты при соответствующих неизвестных пропорциональны, т.е. или их угловые коэффициенты равны, т.е. k 1 = k 2.
2) Пусть прямые пересекаются где знак плюс берется в том случае, когда надо найти величину острого угла, а знак минус – когда надо найти величину тупого угла. критерий перпендикулярности прямых, заданных общими уравнениями.
где знак плюс берется в том случае, когда надо найти величину острого угла, а знак минус – когда надо найти величину тупого угла. критерий перпендикулярности прямых, имеющий угловые коэффициенты k 1 и k 2.
4. Расстояние от точки до прямой ЗАДАЧА 3. Пусть прямая задана общим уравнением Ax + By + C = 0, M 0 (x 0 ;y 0 ) – точка, не принадлежащая прямой. Найти расстояние от точки M 0 до прямой.
§ 14. Плоскость 1. Общее уравнение плоскости и его исследование ЗАДАЧА 1. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), перпендикулярно вектору Вектор, перпендикулярный плоскости, называют нормальным вектором этой плоскости.
ВЫВОДЫ: 1) Плоскость является поверхностью первого порядка. В общем случае она задается уравнением Ax+By+Cz+D=0, где A,B,C,D – числа. 2) Коэффициенты A, B, C не обращаются в ноль одновременно, так как с геометрической точки зрения это координаты вектора, перпендикулярного плоскости.
ИССЛЕДОВАНИЕ ОБЩЕГО УРАВНЕНИЯ ПЛОСКОСТИ Если в уравнении Ax+By+Cz+D = 0 все коэффициенты A,B,C и D отличны от нуля, то уравнение называют полным; если хотя бы один из коэффициентов равен нулю – неполным. 1) Пусть общее уравнение плоскости – полное. Тогда его можно записать в виде С геометрической точки зрения a,b и c – отрезки, отсекаемые плоскостью на координатных осях Ox, Oy и Oz соответственно. Уравнение (3) называют уравнением плоскости в отрезках.
2) Пусть в общем уравнении плоскости коэффициенты A, B и C – ненулевые, а D = 0, т.е. уравнение плоскости имеет вид Ax+By +Cz = 0. Такая плоскость проходит через начало координат O(0;0;0). 1 : By+Cz = 0 (пересечение с плоскостью Oyz) 2 : Ax+By = 0 (пересечение с плоскостью Oxy)
а) плоскость отсекает на осях Ox и Oy отрезки a и b соответственно и параллельна оси Oz; 3) Пусть в общем уравнении плоскости один из коэффициентов A, B или C – нулевой, а D 0, т.е. уравнение плоскости один из следующих трех видов: а) Ax+By+D = 0 б) Ax+Cz+D = 0 в) By+Cz+D = 0. Эти уравнения можно записать соответственно в виде
б) плоскость отсекает на осях Ox и Oz отрезки a и c соответственно и параллельна оси Oy; в) плоскость отсекает на осях Oy и Oz отрезки b и c соответственно и параллельна оси Ox. Иначе говоря, плоскость, в уравнении которой отсутствует одна из координат, параллельна оси отсутствующей координаты.
4) Пусть в уравнении плоскости (2) два из трех коэффициентов A, B или C – нулевые, а D 0, т.е. уравнение плоскости имеет вид: а) Ax+D = 0 или б) By+D = 0 или в) Cz+D = 0. Эти уравнения можно записать соответственно в виде: а) плоскость отсекает на оси Ox отрезок a и параллельна осям Oy и Oz (т.е. параллельна плоскости Oyz);
б) плоскость отсекает на Oy отрезок b и параллельна осям Ox и Oz (т.е. параллельна плоскости Oxz); в) плоскость отсекает на Oz отрезок c и параллельна осям Ox и Oy (т.е. параллельна плоскости Oxy). Иначе говоря, плоскость, в уравнении которой отсутствуют две координаты, параллельна координатной плоскости, проходящей через оси отсутствующих координат.
5) Пусть в общем уравнении плоскости (2) D = 0 и один из коэффициентов A, B или C тоже нулевой, т.е. уравнение плоскости имеет вид: а) Ax+By = 0 или б) Ax+Cz = 0 или в) By+Cz = 0. Плоскость проходит через начало координат и ось отсутствующей координаты
6) Пусть в общем уравнении плоскости (2) три коэффициента равны нулю, т.е. уравнение плоскости имеет вид а) Ax = 0 или б) By = 0 или в) Cz = 0. Эти уравнения можно записать соответственно в виде: а) x = 0 – уравнение координатной плоскости Oyz; б) y = 0 – уравнение координатной плоскости Oxz, в) z = 0 – уравнение координатной плоскости Oxy.
Замечание. Пусть плоскость λ не проходит через O(0;0;0). Тогда уравнение λ можно записать в виде cosα · x + cosβ · y + cosγ · z + D = 0, где D = – p (доказать самим). Этот частный случай общего уравнения плоскости называется нормальным уравнением плоскости. Обозначим: 1) P 0 (x 0 ;y 0 ;z 0 ) – основание перпендикуляра, опущенного на λ из начала координат,
2. Другие формы записи уравнения плоскости 1) Уравнение плоскости, проходящей через точку параллельно двум неколлинеарным векторам ЗАДАЧА 2. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), параллельно неколлинеарным векторам Другие формы записи: Уравнение плоскости, проходящей через точку перпендикулярно вектору (см. уравнение (1) и (1*)); Уравнение плоскости в отрезках (см уравнение (2)); Уравнение плоскости, проходящей через точку параллельно двум неколлинеарным векторам; Уравнение плоскости, проходящей через три точки;
2)Уравнение плоскости, проходящей через три точки, не лежащие на одной прямой – частный случай уравнения (4) Пусть плоскость проходит через три точки M 1 (x 1 ;y 1 ;z 1 ), M 2 (x 2 ;y 2 ;z 2 ) и M 3 (x 3 ;y 3 ;z 3 ), не лежащие на одной прямой.