ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ДЛЯ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ.

Презентация:



Advertisements
Похожие презентации
Исаак Ньютон ( ) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы.
Advertisements

дифференцирование интегрирование Обозначения: f(x) – функция, F(x) – первообразная. Функция F называется первообразной для функции f, если выполняется.
Учитель математики МКОУ СОШ5 Цуканова Зоя Ивановна.
Применение интеграла при решении физических задач Выполнили: учитель физики Носенко Л.В. учитель математики Усенко С.Д. сош 35 г.Николаева 2012 г
План лекции: 1. Методы интегрирования(продолжение) 2. Определенный интеграл.
И его применение. Определение Пусть на отрезке [а;b] оси Ох задана непрерывная функция f(x), не имеющая на нем знака. Фигуру, ограниченную графиком этой.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного.
Первообразная Урок 63 По данной теме урок 1 Классная работа
Тема: Определенный интеграл, его основные свойства. Формула Ньютона- Лейбница. Приложения определенного интеграла. Определенный интеграл, его основные.
Применение производной в физике и технике. Механический смысл производной Механическое истолкование производной было впервые дано И. Ньютоном. Оно заключается.
Задачи, приводящие к понятию определенного интеграла Задача1. (О вычислении площади криволинейной трапеции.)
1.Что называется первообразной? Функция F называется первообразной для функции f на заданном промежутке, если для всех х из этого промежутка F (x)= f(x).
Урок - Практикум Применение первообразной и интеграла при решении практических задач в геометрии, физике, биологии.
ПЕРВООБРАЗНАЯ, ИНТЕГРАЛ.. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка.
Площадь криволинейной трапеции
Твердое тело – это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его.
МКОУ «Большеатлымская средняя общеобразовательная школа» Тема: «Интеграл и его практическое применение» Сближение теории с практикой дает самые благоприятные.
Презентация к уроку (алгебра, 11 класс) на тему: Презентация по алгебре 11 класс "Первообразная. Интеграл"
Тема урока: «Применение интеграла к решению физических задач» Учитель математики ВКК МБОУ СОШ с углубленным изучением отдельных предметов Орлова О.В. г.
Транксрипт:

ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ДЛЯ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ

Исаак Ньютон ( )

Лейбниц Готфрид Вильгельм ( ) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц

Задача о нахождении объёма тела Найдём объём тела, ограниченного поверхностью вращения линии вокруг оси (при ). Для вычисления объёма тела вращения применим формулу: Имеем:

Физические приложения определенного интеграла А) Вычисление работы движущегося тела Б) Вычисление перемещения движущегося тела В) Вычисление массы тела Г) Вычисление электрического заряда в проводнике с током

Схема решения физических задач с использованием определенного интеграла А) сделать чертеж, соответствующий условию задачи, Б) выбрать систему координат, В) выбрать независимую переменную, Г) выбрать формулу классической физики, соответствующую условию задачи, Д) найти дифференциал искомой величины на основании этой формулы, Е) установить промежуток интегрирования, Ж) вычислить интеграл, т.е. найти искомую величину.

Пример 1. Нахождение пути по заданной скорости. Пусть точка движется со скоростью V(t). Нужно найти путь s, пройденный точкой от момента t=a до момента t=b. Обозначим s(t) путь, пройденный точкой за время t от момента a. Тогда s(t)=V(t), т.е. s(t) – первообразная для функции V(t). Поэтому по формуле Ньютона - Лейбница найдём: s= V(t)dt. Например, если точка движется со скоростью V(t)=2t+1(м/с), то путь, пройденный точкой за первые 10 с, по формуле равен S= 10 (2t+1)dt = (t 2 + t)| 10 = 110(м)

Пример 2. Задача о вычислении работы переменной силы. Пусть тело, рассматриваемое как материальная точка, движется по оси O x под действием силы F (x), направленной вдоль оси O x. Вычислим работу силы при перемещении тела из точки x=a в точку x=b. Пусть A (x) – работа данной силы при перемещении тела из точки а в точку x. При малом h силу F на отрезке можно считать постоянной и равной F (x). Поэтому A (x + h) – A (x) =F (x)h, т.е. : A (x + h) – A (x) h F (x) Устремляя h к нулю, получаем, что A (x) = F (x), т.е. A (x) – первообразная для функции F (x). По формуле Ньютона – Лейбница получаем A (b) = F (x) dx, так как A (a) = 0 Итак, работа силы F (x) при перемещении тела из точки a в точку b равна: A (b) = F (x) dx

Пример 3 Капля с начальной массой M падает под действием силы тяжести и равномерно испаряется, теряя массу m. Какова работа силы тяжести за время падения до полного испарения?

Пример 4.Вычисление кинетической энергии

Пример 5.Нахождение силы.

Масса стержня Пусть плотность ρ ( x ) стержня с постоянным сечением S зависит от расстояния до начала стержня. Тогда масса стержня равна: где L – длина стержня, а центр масс стержня находится на расстоянии: