1 Теория множеств Декартово произведение. 2 Задание 1 Пусть А – множество точек отрезка [0, 1]; B – множество точек отрезка [2, 3]; C={4, 5, 6}; D – множество.

Презентация:



Advertisements
Похожие презентации
1 Задание 1 Даны 2000 множеств, каждое из которых состоит из 45 элементов, причём объединение любых двух множеств содержит ровно 89 элементов. Сколько.
Advertisements

Теория множеств. Задание Определите перечислением множество четных чисел, меньших 15. множество чисел, кратных 6, меньших 25. Определите заданием характеристического.
1 Теория множеств Декартово произведение. Задание Существуют ли такие множества А, В и С, что А ВØ, А С=Ø и (А В)\С=Ø? Определить множества: {x| y Z,
Теория множеств Теоремы теории множеств. Задание Старейший математик среди шахматистов и старейший шахматист среди математиков – это один и тот же человек.
1 Теория множеств Декартово произведение. 2 Декартовым или прямым произведением множеств A 1, A 2,...,A n называется множество {(x 1, x 2,...,x n )|x.
Определение множества Множество – это совокупность однотипных элементов или объектов, объединённых по некоторому признаку. Например, множество книг в.
Понятие множества Операции над множествами Множества конечные и бесконечные.
Множества. Операции над множествами.. 1. Пересечением двух множеств А и В называется множество А В, которое состоит из всех элементов, лежащих.
Числовые промежутки. 1. х >3; х - 2; 2 х х - 5; х 2 ; - 2 х Прочитать неравенства 2. Неравенства 1 группы называются строгие 3. Неравенства.
Презентацию подготовила учитель математики МОУ СОШ 15 Букова А.А.
Понятия теории множеств П онятие множества является одним из наиболее общих и наиболее важных математических понятий. Оно было введено в математику немецким.
Глава II. ТЕОРИЯ МНОЖЕСТВ 1. Основные понятия теории множеств Множество – некоторая совокупность объектов, называемых элементами этого множества. Понятие.
Теория множеств Круги Эйлера. Круги́ Э́йлера геометрическая схема, при помощи которой можно изобразить несколько подмножеств вместе c их объединениями,
Подмножество Домашнее задание: §3.2 – ; 3.12(в,г); 3.13(в,г); 3.14(в,г) 1.
Элементы теории множеств. Понятие множества Множество - это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить,
Множества. Операции над множествами. «Множество есть многое, мыслимое нами как единое» (основатель теории множеств – Георг Кантор).
m(A)=2 m(ø)=0 Число элементов пустого множества равно нулю: Если конечное множество А представимо в виде объединения непересекающихся множеств А 1,А 2,…,А.
Данная работа подготовлена для учителей математики и информатики. Имеет цель ознакомления учащихся на уроках и факультативных занятиях. Автор: учитель.
Круги Эйлера Работу выполнила ученица 6 класса МОУ «Протопоповская ООШ» Вдовина Елена Вадимовна.
Упражнение 1 Проведите прямые, проходящие через различные пары из данных точек. Сколько всего таких прямых? Ответ: 6.
Транксрипт:

1 Теория множеств Декартово произведение

2 Задание 1 Пусть А – множество точек отрезка [0, 1]; B – множество точек отрезка [2, 3]; C={4, 5, 6}; D – множество точек квадрата с вершинами в точках (0,0), (0,1), (1,0), (1,1). Найти геометрическую интерпретацию множеств: A×B, A×C, C×B, A×D, C×D, D×B.

3 Задание 2 Пусть N={1,3,7} и M={0,1,3,4,8}. Из каких элементов состоят множества N×M и M×N? (N×M) (M×N) и (N×M) (M×N)? (N M)×(M N) и (N M)×(M N)? Найти число элементом множества X×Y, если множество X состоит из n элементов, а множество Y из m элементов.

4 Задание 3 Пусть A={1,2}, B={a, b}, C={c, d}, D={ d | d N и x

5 Задание 4 Определить множества A и B, если известно, что

6 Задание 5 Дать геометрическую интерпретацию множества A B\C, если A={(x,y)| x,y R и |x|4, |y|4}; B={(x,y)| x,y R, x 2 +y 225}; C={(x,y)| x,y R и y>0}.

7 Задание 6 Изобразить на координатной прямой множества A B, A B и A B, если: A={x| x R и x (–1,0]} и B={x| x R и x [0,2)}, A={x|x R и x (–,1]} и B={x|x R и x ( –,–3)}.

8 Задание 7 Даны 2000 множеств, каждое из которых состоит из 45 элементов, причём объединение любых двух множеств содержит ровно 89 элементов. Сколько элементов содержит объединение всех этих 1985 множеств?

9 Задание 8 В гимназии все ученики знают хотя бы один из древних языков греческий или латынь, а некоторые оба языка. 85% всех ребят знают греческий язык и 75% знают латынь. Какая часть учащихся знает оба языка?

10 Задание 9 Собрались 12 волейболистов и 9 теннисистов, а всего – 16 человек. Сколько из них играют и в волейбол, и в теннис?

11 Задание 10 Множество А содержит 5 элементов, множество В – 4 элемента, а их пересечение содержит 2 элемента. Сколько элементов содержит объединение множеств А и В?

12 Задание 11 Из 100 студентов педагогику сдали 28 человек, математику - 30 человек, философию - 42 человека, педагогику и математику - 8, математику и философию - 5, педагогику и философию - 10, все три экзамена - 3 человека. Сколько человек не сдало ни одного экзамена?

13 Задание 12 Из группы студентов на занятия физкультурой ходят 20 человек, а в секции - 18, причем 15 человек одновременно ходят и в секции и на занятия по физкультуре. Сколько студентов освобождены от занятий спортом, если всего в группе 25 человек?

14 Задание 13 Доказать, что (A×B) (C×D) (A C)×(B D). При каких A, B, C, D включение можно заменить равенством?

15 Задание 14 Доказать, что для произвольных A, B, C, D: (A B)×C=(A×C) (B×C), (A\B)×C=(A×C)\(B×C), A×(B\C)=(A×B)\(A×C), (AB)×(СD)=(A×C)(B×D), A×B=(A×D)(C×B), где A C и B D.

16 Задание 15 Пусть A, B и (A×B) (B×A)=C×D. Доказать, что в этом случае A=B=C=D.