Размещение Пусть имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c и d. Каждую упорядоченную тройку, которую можно составить из четырех.

Презентация:



Advertisements
Похожие презентации
Элементы комбинаторики Размещения Урок алгебры в 9 классе ©Vyazovchenko N.K., 2012.
Advertisements

Примеры комбинаторных задач Перестановки Перестановки Размещения Размещения Сочетания Сочетания.
На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром. Из скольких вариантов завтрака Вова может.
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Элементы комбинаторики РАЗМЕЩЕНИЯ. Задача 1. Имеется 4 шара и 4 пустых ячейки в коробке. Сколько вариантов расположения шаров можно получить? Задача 2.
LOGO Элементы комбинаторики..
УРОК 4. Элементы комбинаторики.. Задачи на непосредственный подсчет вероятностей Комбинаторика изучает количество комбинаций (подчиненное определенным.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
Размещения. А Размещения В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что каждое место занято.
КОМБИНАТОРИКА. Комбинаторика (лат. «combina») соединять, сочетать это раздел математики, который изучает, сколько различных комбинаций можно составить.
Комбинаторика Размещение и сочитание. Размещение В комбинаторике размещением называется расположение «предметов» на некоторых «местах» при условии, что.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Элементы комбинаторики. 1.ЧЧто изучает комбинаторика. 2.ППерестановки: a)ЧЧисло перестановок. b)ППример. 3.РРазмещения: a)ЧЧисло размещений. b)ППример.
Сочетания и их свойства. А-11. Определение: Сочетаниями из m элементов по n элементов в каждом (nm) называются соединения, каждое из которых содержит.
Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга.
Размещения Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей.
Элементы комбинаторики Лекция 4. Комбинаторика – это наука о расположении элементов в определенном порядке и о подсчете числа способов такого расположения.
Перестановки Цели образовательные : объяснить понятие перестановки ; ввести понятие факториала и объяснить правила работы с ним ; рассмотреть задачу.
Элементы комбинаторики Сочетания. Вопрос дня: КАК РАЗЛИЧАТЬ ПРИМЕНЕНИЕ ТЕОРЕМ?
Делители и кратные. Повторение Вспомните, какие числа называются натуральными. Вспомните, какие числа называются натуральными. 8 : 2, 16 : 4 8 : 2, 16.
Транксрипт:

Размещение

Пусть имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c и d. Каждую упорядоченную тройку, которую можно составить из четырех элементов, называют размещением из четырех элементов по три. abc acb b a c dcb

Размещением из n элементов по k (kn) называется любое множество, состоящее из k элементов, взятых в определенном порядке из данных n элементов.

А k n (читают: «А из n по k») Размещения из n элементов по k считаются различными, если они отличаются самими элементами или порядком их расположения.

А k n =n(n-1)(n-2)…(n-(k-1)) А n n =n(n-1)(n-2)…(n-(n-1)),т.е. А n n =12…(n-2)(n-1)n=n!

Пример 1. Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета? А 4 8 = =1680

Пример 2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0, 1, 2, 3, 4, 5,6? А 3 7 – А 2 6 = = 180

Закрепление. Решение задач : 9.24, 9.26,9.28 Что нового узнали на уроке? Д/з: 9.25,9.9.27,9.29