Кто ничего не замечает, Тот ничего не изучает, Кто ничего не изучает, Тот вечно хнычет и скучает Сеф.

Презентация:



Advertisements
Похожие презентации
1 В царстве формул В царстве формул сокращенного умножения Автор – Ефимова Анфиса Николаевна, учитель математики МОУ «Новошимкусская СОШ Яльчикского района.
Advertisements

Кто ничего не замечает, Тот ничего не изучает, Кто ничего не изучает, Тот вечно хнычет и скучает Сеф.
Кто ничего не замечает, Тот ничего не изучает, Кто ничего не изучает, Тот вечно хнычет и скучает Сеф.
Кто ничего не замечает, Тот ничего не изучает, Кто ничего не изучает, Тот вечно хнычет и скучает Сеф.
Формулы сокращенного умножения. Цель урока: Обобщить и систематизировать учебный материал; сформировать навыки применения формул сокращенного умножения;
Представить в виде многочлена 1.(х + у) 2 2.(в + 3) 2 3.(9 – у) 2 4.(а – 0,3) 2 5.(0,1х – 2у) 2 6.(– 3 – в) 2.
Уроки с интерактивной доской Сборник анимированных материалов по теме «Формулы сокращённого умножения» 7 класс алгебра.
Интегрированный урок по алгебре. Концентрация внимания Сравнение Уравнение Множитель Многочлен Аксиома.
Формулы сокращенного умножения. Представление выражения в виде многочлена. МОУ г. Мурманска гимназия 3 Шахова Татьяна Александровна.
1)(a - b)(a + b)= 2) (c - d)(c + d)= 3)(m - n)(m + n)= 4)(p - q)(p + q)= a 2 – b 2 c 2 – d 2 m 2 – n 2 p 2 – q 2 (a - b)(a + b)= a 2 – b 2 1.Чему равно.
Умножение разности двух выражений на их сумму. Учитель математики первой квалификационной категории Ксензюк Л.П.
Формулы сокращенного умножения Формулы сокращённого умножения 1) Квадрат суммы двух выражений 2) Квадрат разности двух выражений Разложение на множители.
Формулы сокращенного умножения. Квадрат суммы (a + b) 2 = a 2 + b 2 + 2ab Квадрат суммы двух выражений равен сумме квадратов каждого выражения и их удвоенного.
«ФОРМУЛЫ КВАДРАТА СУММЫ И КВАДРАТА РАЗНОСТИ» УРОК-ИССЛЕДОВАНИЕ УРОК-ИССЛЕДОВАНИЕ ПО АЛГЕБРЕ В 7 КЛАССЕ Учитель математики Кагарманова Г.С.
Квадрат суммы. Квадрат разности. Цели: вывести формулы сокращенного умножения (квадрат суммы, квадрат разности); развитие умения применять эти формулы.
Формула разности квадратов. Алгебра 7 класс МОУ Архангельская СОШ Урок подготовила и провела учитель математики Прохорова Ж.В.
Квадрат суммы Квадрат разности Разность квадратов.
Какие способы разложения многочлена на множители вы знаете? Какие формулы сокращённого умножения вам известны?
Урок-лабиринт. Карта «Лабиринта» Карта «Лабиринта»
Знание - самое превосходное из владений. Все стремятся к нему, само оно не приходит. Абу-р-Райхан ал-Буруни. Учитель математики и информатики: Мышаева.
Транксрипт:

Кто ничего не замечает, Тот ничего не изучает, Кто ничего не изучает, Тот вечно хнычет и скучает Сеф

«Цель школы – нести радость и счастье детям»

В царстве формул В царстве формул сокращенного умножения Обобщающий урок по алгебре «Цель школы – нести радость и счастье детям» Г.Н.Волков

Классная работа

Цель урока: Обобщить и систематизировать учебный материал; сформировать навыки применения формул сокращенного умножения ; Развивать внимание, память, речь, логическое мышление, самостоятельность. Воспитать стремление достигнуть поставленную цель, чувство ответственности, уверенности в себе, умение работать в коллективе.

Итак, повторим…

Устно 4 2 ; -0,5 2 ; (1/2) 2 ; (-7) 2 ; 0,4 2 ; (3/4) 2 ; 1 3 ; 2 3 ; 5 3 ; (-0,4) 3 ; (2/3) 3.

Докончите формулы сокращенного умножения! (а + b)²= (а - b)²= а² - b² = а³ + b³ = а³- b³ = (а + b)³= (а - b)³=

Докончите формулы сокращенного умножения! (а + b)²= а²+2аb+b² (а - b)²= а²-2аb+b² а² - b² = (а-b) (а+b) а³ + b³ = (а+b) (а²-аb+b²) а³- b³ = (а-b) (а²+аb+b²) (а + b)³= а³+3а²b+3аb²+b³ (а - b)³= а³-3а²b+3аb²-b³

Произведение разности двух выражений на их сумму равно… (a-b)(a+b)= a 2 -b 2 …разности квадратов этих выражений. Закончите формулировку

11 Прочитайте выражение (x-y)(x 2 +y 2 +xy)=(x+y)(x 2 +y 2 -xy)= =x 3 -y 3 =x 3 +y 3 Произведение разности двух выражений на неполный квадрат суммы равно разности кубов этих выражений. Произведение суммы двух выражений на неполный квадрат разности равно сумме кубов этих выражений.

1.Выполните умножение а) (х-у)(х+у) =х 2 –у 2 б) (2+х)(2-х) = 4 - х 2 в) (а+3в)(а-3в) =а 2 - 9в 2 г) (х 2 +3)(х 2 -3) = х д) (-4а+2)(4а+2) =4 – 16а 2 е) (-10-х 6 )(-10+х 6 ) =100 – х 12

Путешествие по стране формул сокращенного умножения Купе - 5 Плацкарт - 4 Общий - 3 и 2

Математический диктант

Математический диктант a 2 2b x + y x 2 + y 3 2ab3cd (a+b) 2 (x-y) 2 b. a 2 a 3. 2b

Путешествие по стране формул сокращенного умножения Купе - 5 Плацкарт - 4 Общий - 3 и 2

ОздоровительнаяОздоровительная Преобразуйте в многочлен (x+y)(x 2 -xy+y 2 ) (5x+y)(25x 2 -5xy+y 3 ) (1+a)(1-a+a 2 ) (2x 2 -y 2 )(4x 4 +2x 2 y 2 +y 4 )

Оздоровительная x n 2 - 9m 2 16b 2 – a 4 x 3 +y 3 125x 3 +y 3 1+a 3 8x 6 -y 6 ОКРМОЬВОКРМОЬВ x 3 +y 3 125x 3 +y 3 16b 2 – a 4 25n 2 - 9m 2 x x 6 -y 6 1+a 3

Неизвестная Вариант 1 a) (x+6) 2 -(x-5)(x+5)=73 б) Вариант 2 а) (x+5) 2 -(x-3)(x+3)=44 б)

Вычислительная В а р и а н т 1. 1.Найдите значение выражения при х = 2. 1.Разложите на множители: 3. Заменить * одночленом так, чтобы получилось тождество: * - 225c 2 = (m 2 - *)(*+m 2 ) b 2 +20b+*=(*+*) 2 В а р и а н т 2. 1.Найдите значение выражения при х = 1 1.Разложите на множители: 3. Заменить * одночленом так, чтобы получилось тождество: (5x+*)(5x- *) = ( * - 0,16y 4 ) * +14b+49 =(*+*) 2

21 Проверь себя a)а³- 125 = (а-5) (а²+5а+25) б) 64+ x³ = (4+x) (16- 4x+x²) в) а = (а-9) (а+9) г) n³- 25n = n(n-5) (n+5) 3 m c 2 = (m 2 -15c)(15c+m 2 ) b 2 +20b+100 = (b+10) 2 1 в. 2 в. 2 a)y³- 64 = (y-4) (y²+4y+16) б) 27+ a³ = (3+a) (9- 3a+a²) в) 25а = (5а-1) (5а+1) г) x 2 -6x+9 = (x-3) 2 3 (5x+0,4y 2 )(5x-0,4y 2 )=25x 2 - 0,16y 4 b 2 +14b+49 = (b+7) 2

Познавательная Прочти исторический материал по учебнику на странице 206

Домашнее задание повторить формулы сокращенного умножения выполнить тест

25-27 баллов баллов 4 до 20 баллов 3

3.Разложите на множители а) 9а 2 -1= (3а – 1)(3а + 1) б) 25-х 2 = (5 - х)(5 + х) в) х 3 = (5 - х)(25 +5х + х 2 ) г) 27 х = (3х – 10)(9х х + 100) д)0,008 а 3 +1 = (0,2а +1)(0,04а 2 - 0,2а +1)