Логика – это наука о способах рассуждения, то есть о том, как делать верные умозаключения, пользуясь доступной информацией.
от перестановки мест аргументов результат не изменяется A & B = B & A существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: от перестановки мест аргументов результат не изменяется A v B = B v A существует следующий закон (A v B) v С = A v (B v C) можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА 2) (~A) v (~B) = ~ (A & B) от перестановки мест аргументов результат не изменяется A & B = B & A существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: от перестановки мест аргументов результат не изменяется A v B = B v A существует следующий закон (A v B) v С = A v (B v C) можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА 2) (~A) v (~B) = ~ (A & B)
Понятие логики как науки появилось ещё в XIX в., т.е. задолго до появления науки информатики и компьютеров. Элементы математической логики можно найти уже в работах древнегреческих философов. В XVII в. Г. В. Лейбниц высказал идею о том, что рассуждения могут быть сведены к механическому выполнению определенных действий по установленным правилам. Однако как самостоятельный раздел математики логика начала формироваться только с середины XIX в..
(X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) – это выражение принимает значение 1 при тех же значениях, что и исходная функция. Полученное выражение можно упростить. (X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) = X1 & ((X2 & (~X3)) v ((~X2) & X3) v (X2 & X3)) = X1 & ((X2 & (~X3)) v X3 & ((~X2) v X2)) = X1 & ((X2 & (~X3)) v X3) – эта формула несколько длиннее исходной, но намного проще полученной в первый раз. Дальнейшие пути упрощения более сложны и представляют большой интерес для проектировщиков интегральных микросхем, т.к. меньшее число операций требует меньшее число элементов, их которых состоит ИС.
После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры ПК. Благодаря своей бинарной природе, математическая логика получила широкое распространение в ВТ и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы. В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер. После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры ПК. Благодаря своей бинарной природе, математическая логика получила широкое распространение в ВТ и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы. В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер.
АĀ ИЛ ЛИ ИНВЕРСИЯ АВ АѴВАѴВ ИИИ ИЛИ ЛИИ ЛЛЛ ДИЗЪЮНКЦИЯ АВА&ВА&В ИИИ ИЛЛ ЛИЛ ЛЛЛ КОНЪЮНКЦИЯ
АВА В ИИИ ИЛЛ ЛИИ ЛЛИ ИМПЛИКАЦИЯ АВА~В ИИИ ИЛЛ ЛИЛ ЛЛИ ЭКВИВАЛЕНТНОСТЬ АВА хоr В ИИЛ ИЛИ ЛИИ ЛЛЛ ИСКЛЮЧАЮЩЕЕ «ИЛИ»
Итак, логика возникла задолго до появления компьютеров и возникла она в результате необходимости в строгом формальном языке. Были построены функции – удобное средство для построения сложных утверждений и проверки их истинности. Оказалось, что такие функции обладают аналогичными свойствами с алгебраическими операторами. Это дало возможность упрощать исходные выражения. Особое свойство логических выражений – возможность их нахождения по значениям. Это получило широкое распространение в цифровой электронике, где используются логические элементы, и программировании.
«Компьютер» Ю. Л. Кетков, изд. «Дрофа» 1997 г. «Математика» Ю. Владимиров, изд. «Аванта+» 1998 г.