Объём прямоугольного параллелепипеда, призмы, цилиндра Цель урока: познакомиться с понятием объёма; рассмотреть свойства объёмов; теорему об объёме прямоугольного параллелепипеда и следствие о прямой призме, основание которой прямоугольный треугольник, вывести формулу объёма цилиндра.
Понятие объёма За единицу измерения объёмов принимается куб, ребро которого равно единице измерения отрезков. Куб с ребром 1см называют кубическим сантиметром, обозначают. Аналогично определяются кубический метр, кубический миллиметр. Свойства объёмов: 1.Равные тела имеют равные объёмы. 2.Если тело составлено из нескольких тел, то его объём равен сумме объёмов этих тел. 3.Объём куба с ребром равен
Теорема: Объём прямоугольного параллелепипеда равен произведению трёх его измерений. V = abc Следствие 1: Объём прямоугольного параллелепипеда равен произведению площади основания на высоту. Следствие 2: Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту. Дано: – прямая треугольная призма, Доказать: Доказательство:
Объём прямой призмы Теорема: Объём прямой призмы равен произведению площади основания на высоту. 1. – прямая треугольная призма с объёмом V и высотой h. Проведём такую высоту треугольника АВС (BD), которая разделяет треугольник на два треугольника. (BB1D) разделяет данную призму на две призмы, основаниями которых являются прямоугольные треугольники ABD и BDC. Т. е. 2. Произвольную призму разобьём на треугольные призмы с высотой h.
Объём цилиндра Призма вписана в цилиндр, если её основания вписаны в основания цилиндра. Призма описана около цилиндра, если её основания описаны около оснований цилиндра. Высота любой призмы, вписанной в цилиндр или описанной около него, равна высоте самого цилиндра Теорема: Объём цилиндра равен произведению площади основания на высоту.
Доказательство Впишем в данный цилиндр Р радиуса r и высоты h правильную n–угольную призму F n, а в эту призму впишем цилиндр Рп. Пусть V – объём цилиндра Р, V n – объем цилиндра Р п ; r п радиус цилиндра Р п. Так как объем призмы F n равен S n h, где S n площадь основания призмы, а цилиндр Р содержит призму F n, которая, в свою очередь, содержит цилиндр Рп, то V n < S n h < V. (2) Будем неограниченно увеличивать число n. При этом радиус r п цилиндра Р п стремится к радиусу r цилиндра Р h Цилиндр Поэтому объём цилиндра стремится к объёму цилиндра Р: Рп Из неравенства (2) следует, что Но Т.е. Итак, объём цилиндра равен: