ПРЕЦИЗИОННОЕ ИЗМЕРЕНИЕ СКОРОСТИ ЗАХВАТА МЮОНА В ВОДОРОДЕ И ОПРЕДЕЛЕНИЕ ПСЕВДОСКАЛЯРНОГО ФОРМ ФАКТОРА ПРОТОНА g P PNPI participants in MuCAP collaboration*)

Презентация:



Advertisements
Похожие презентации
PRECISION MEASUREMENT OF THE RATE OF MUON CAPTURE IN HYDROGEN GAS AND DETERMINATION IN THE PROTONS PSEUDOSCALAR COUPLING g P PNPI participants in MuCAP.
Advertisements

Cap ПИЯФ ГМР Группа Шапкина Протий-газ Хим. очистка и анализ примесей Лаборатория Алексеева (ОНИ) Протиевая вода ФТИ им. Иоффе Анализ примесей D2 Лаборатория.
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
Recent advances in intercalation compounds physics.
25/12/2002B.Botchine PNPI MUON CHAMBER FACTORY for LHCb experiment B.Bochin December 25,2002.
ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПОЛЯРИЗУЕМОСТЕЙ ПРОТОНА И НЕЙТРОНА. СТАТУС СОВМЕСТНОГО (ПИЯФ-ТУД) ЭКСПЕРИМЕНТА НА ЭЛЕКТРОННОМ УСКОРИТЕЛЕ (S-DALINAC)
© 2006 Cisco Systems, Inc. All rights reserved. HIPS v Using CSA Analysis Generating Application Deployment Reports.
Functional modeling of processes in the development of new technical solutions Kozhevnikova V.I. Scientific advisor: Chizhiumov S.D.
The Pulse Generator for the Supersonic Flow Structure Control ГЕНЕРАТОР ИМПУЛЬСОВ ДЛЯ УПРАВЛЕНИЯ СТРУКТУРОЙ СВЕРХЗВУКОВОГО ПОТОКА Khristianovich Institute.
The reconstruction of coding scheme through errors distributions Lyakhovetskii V.A., Karpinskaya V.Ju*, Bobrova E.V. Pavlov Institute of Physiology of.
MATHEMATICAL MODEL OF ICE SHEET DEFORMATION CAUSED BY SUBMARINE MOTION V. M. Kozin, V. L. Zemlak, S. D. Chizhiumov Shipbuilding Department, State Technical.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting to Remote Networks Using Packet Switching in WANs.
Workshop 11 Imprint - Assembly Meshing Wizard. WS11-2 Assembly Meshing Wizard Design goals One comprehensive user interface Intuitive approach for solid.
Form 9 Revision. 1) What ___ you do if you won lots of money? a) WILL b) WONT c) WOULD e) WOULDNT.
PULSE REPETITION RATE OPTMIZATION IN SLR STATIONS TO PROVIDE MINIMUM SYSTEMATIC ERROR OF RANGING M.A. Sadovnikov M.A. Sadovnikov Institute for Precision.
PAT312, Section 23, December 2006 S23-1 Copyright 2007 MSC.Software Corporation SECTION 23 VIEWPORTS.
S13-1 PAT318, Section 13, March 2005 SECTION 13 VIEWPORTS.
1.Установка SPIN-P02 (ИТЭФ). 2.Изучение реакции перезарядки (ПИЯФ). 3.Crystal Barrel (ISKP, Bonn). 4.Crystal Ball (Univ. Mainz). 5.Новый ПВА для пион-нуклонного.
Chapter 21: Managing ATM VLANs 21-1 Copyright © 1998, Cisco Systems, Inc.
А.В.Акимов, А.Ю.Антонов, А.В.Антошин, П.А.Бак, А.М.Барняков, М.Ф.Блинов, Ю.М.Боймельштейн, Д.Ю.Болховитянов, Ф.А.Еманов, А.Р.Фролов, Р.Х.Галимов, С.М.Гуров,
Транксрипт:

ПРЕЦИЗИОННОЕ ИЗМЕРЕНИЕ СКОРОСТИ ЗАХВАТА МЮОНА В ВОДОРОДЕ И ОПРЕДЕЛЕНИЕ ПСЕВДОСКАЛЯРНОГО ФОРМ ФАКТОРА ПРОТОНА g P PNPI participants in MuCAP collaboration*) : V.A. Andreev, V.A. Ganzha, P. A.Kravtsov, A.G. Krivshich, M.P. Levchenko, E.M. Maev, O.E. Maev, G.E. Petrov, G.N. Schapkin, G.G. Semenchuk, M. A. Soroka, A.A. Vasilyev, A.A. Vorobyov, M.E. Vznuzdaev

- + p (µ - p) 1S µ + n BR=0.16% - + p (µ - p) 1S µ + n BR=0.16% MuCap goal: to measure µp-capture rate Λ S with 1% (or better) precision Muon Capture on Proton ΛSΛS µ νµνµ pn W q c 2 = m µ 2 µp-capture offers a unique probe of the nucleons electroweak axial structure

Muon capture on proton

Стандартная Модель и структура нуклонов g v = ± g a = ± g m = ± g P (th) = 8.26 ± 0.23 g P (OMC)= 6 – 12 g P (RMC) = 12.2 ± 0.9 ± 0.4

50 years of effort to determine gP 88 Radiative muon capture in hydrogen was carried out only recently with the result that the derived gP was almost 50% too high. If this result is correct, it would be a sign of new physics... Lincoln Wolfenstein (Ann.ReNucl.Part.Sci. 2003) OMC RMC - + p n + + Kammel&Kubodera

Emilio Zavattini Bologna-Pisa-CERN 1973 Dubna group H2 –target 8 atm Pioneers of muon capture experiments H2 –target 41 atm g p = 11.0 ± 3.8 Expt. Problems Wall effects Background Neutron detection efficiency g p =8.7 ± 5.7

T = 12 s -1 pμ singlet (F=0) S = 712 s -1 n+ triplet (F=1) μ pμ ppμ para (J=0)ortho (J=1) λop ortho =506 s -1 para =200 s -1 ppμ pp P pp O p 100% LH 2 p pp P pp O 1 % LH 2 time ( s) λpp

Стратегия MuCap эксперимента Измерение времени жизни ( с точностью 10ppm, регистрация e распадов ( 10^10) Однозначность интерпретации захват из F=0 состояния p атома при плотности 1% LH2 Использование методики активной мишени (TPC) с точной регистрацией координат и времени остановок мюонов, реконструкция треков электронов к точке распада. Использование ультрачистого водорода Cz < 10ppb Контроль примесей по реакциям: p + Z Z + p, Cz~10ppb. Обеспечение изотопической чистоты водорода p + d d + p + 134eV, примесь Cd

PSI meson factory 600MeV protons 2mA extracted proton beam 100% duty factor High intensity muon channels Muon-on-request mode Muon catalyzed dd-and dt-fusion experiments ( completed ) Muon capture on He-3 ( completed ) Muon capture on proton ( completed ) Muon capture on deuteron ( in progress ) PNPI in PSI since 1986

Schematic view of the TPC The trajectories of charged particles are measured in 3D space with resolution (rms) 1-2 mm.

The signal on TPC anode wires from -e decay event

Display of a typical event with -capture reaction on impurity

IV. the new protium isotope separation facility: production of ultra-depleted protium 1) Cd = 1440 ppb (2004) 2) Cd < 60 ppb (2006) 3) Cd < 6 ppb (2007)

Muon-On-Demand concept Beamline Single muon requirement (to prevent systematics from pile-up) limits accepted rate to ~ 7 kHz, while PSI beam can provide ~ 70 kHz kV kV Kicker Plates 50 ns switching time detector TPC Fig will be improved ~3 times higher rate dc kicked 2-Dec-2005 Lan kicker TRIUMF rf design

Lifetime spectra Normalized residuals

Общая набранная статистика Год μ+ (10^ 9) μ- (10^ 9) Cd(ppb) H2O(ppb) ~1400 ~ ~

TABLE: Applied corrections and systematic errors. Effect Corrections and uncertainties [s-1] R06 R07 Z > 1 impurities mu-p scatter removal mu-p diffusion mu-d diffusion Fiducial volume cut Entrance counter ineff Electron track def Total corr. λ μ =========================================================== mup bound state ( D μp ) ppmu states (D ppμ )

Результаты анализа данных за год N μ- = х λ μ- = ± 12.5stat ± 8.5syst s -1 (MuCAP 2004). λ μ- = ± 7.7stat ± 5.1syst s -1 (MuCAP 2006). λ μ- = ± 8.3stat ± 3.9syst s -1 (MuCAP 2007).

Muon Capture Rate λ s λ s = λ μ- -(λ μ+ - D μp ) + D ppμ D μp = 12.3 s-1 ( μp bound state ) D ppμ = 17.7 s-1 ( λppμ =(1.94 ± 0.06) μ s-1)

Результаты анализа данных за год λ μ+ = ± 0.46 s -1 (μLAN experiment) λ μ- = ± 5.4stat ± 4.7syst s -1 (MuCap ) Λ S MuCap (aver.) = ± 5.4stat ± 5.3syst s -1 Λ S Th = s -1 (aver.) s -1 (r.c.)=712.7± 3.0 ± 3.0 s -1 g P MuCap = g P Th x (Λ S MuCap - Λ S Th ) g P MuCap = 8.06±0.48(exp)±0.28(th) g P Th = (2.8%)

Precise and unambiguous MuCap result solves longstanding puzzle gP(theory) = 8.2 ± 0.2gP(theory) = 8.2 ± 0.2

MuCap collaboration Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign (UIUC), USA Université Catholique de Louvain, Belgium TU München, Garching, Germany University of Kentucky, Lexington, USA Boston University, USA

Earlier, in 1998, we have studied the muon capture on 3 He. The muon capture rate in the channel μ He 3 H + ν μ was measured with high precision : Λ c = ± 4.0 s -1 (0.3% ). This result have been used in some theoretical analyses : L.E. Marcucci et al. (2012) [1] and D. Gazit( 2009) [2] for deriving the Λ c and the protons pseudoscalar form factor g P. Λ c = 1494 ± 21s -1 [1] and Λ c = 1499± 12 s -1 ([2]. g P = 8.13 ± 0.6 [2]