СПЕЦИЛЬНЫЕ ПРИЕМЫ РЕШЕНИЯ УРАВНЕНИЙ. ТЕОРЕМА 1 о корне многочлена Если число а является корнем многочлена Р(х) =а 0 х n +а 1 х n-1 +…..+а n-1 х+а n,где.

Презентация:



Advertisements
Похожие презентации
1. ТРЕТЬЯ СТЕПЕНЬ ЧИСЛА 2. ПОДКОРЕННОЕ ВЫРАЖЕНИЕ В ФОРМУЛЕ КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ 3. ЗНАЧЕНИЕ ПЕРЕМЕННОЙ, ОБРАЩАЮЩЕЕ УРАВНЕНИЕ В ВЕРНОЕ АРВЕНСТВО.
Advertisements

Какое уравнение с одной переменной называется целым?
Способы решения квадратных уравнений Решить уравнение – значит найти такое значение переменной, которое обращает уравнение в верное равенство. Это значение.
Что такое уравнение? Что такое корень уравнения? Что значит решить уравнение? Какие виды уравнений вы знаете? Когда в уравнении появляются посторонние.
Уравнения Определения Равенство с переменной g(x) = f(x) называется уравнением с одной переменной х. Всякое значение переменной, при котором f(x) и g(x)
Тема урока: Решение уравнений 9 класс. На уроке Линейные уравнения. Квадратные и сводимые к ним. Дробно – рациональные уравнения Уравнения высших степеней.
Целое уравнение и его корни.
Равенство, выполняемое при некоторых значениях переменной называется _____________________ Корнями уравнения называются значения переменной, при которых.
Линейные уравнения Подготовила ученица 9б класса Комова Татьяна.
Многочлены. Решение олимпиадных задач по теме «Многочлены» Выполнила ученица 10 класса Б МБОУ лицея 1 Пщегорская Наталья.
Числа а, в и с – коэффициенты квадратного уравнения. Квадратным уравнением называется уравнение вида где х-переменная, а,в и с-некоторые числа, причем.
Лекция Различные способы решения уравнений. Цели занятия: 1) рассмотреть с учащимися различные способы решения уравнений; 2) выработать навык решения различных.
Уравнение называют целым, если обе части его являются целыми выражениями (т.е. не содержат деления на выражения с переменными).
К ВАДРАТНЫЕ УРАВНЕНИЯ. О СНОВНЫЕ ПОНЯТИЯ. Из данных уравнений выбрать квадратные. а)х 2 -1=0; б)х 2 +2 х-1=0, в) г)3 х=0; д)2 х 2 -5 х+6=0; е) 7 х-х 2.
Уравнение - это равенство с одной переменной Например : х +2=0 2 х +1 =5 Корень уравнения – это значение переменной при котором уравнение обращается в.
п.3, стр.19 – 22 1.Приведите примеры многочлена.примеры 2.Что называется корнем многочлена?корнем 3.Что называется квадратным трёхчленом? Приведите примеры.называется.
ДЕЙСТВИЯ НАД МНОГОЧЛЕНАМИ Работу выполнила Попова Вера Николаевна, учитель математики МОУ «ПСОШ» 2.
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
Сколько корней имеет уравнение а) 2 х + 1 = 0;д) 3 х + 1 = х; б) х 2 – 5 = 0;е) х х + 1 = 0; в) х = 0;ж) х 2 + х + 10 = 0; г) х
Решение алгебраических уравнений Методическая разработка учителя Поляковой Е. А.
Транксрипт:

СПЕЦИЛЬНЫЕ ПРИЕМЫ РЕШЕНИЯ УРАВНЕНИЙ

ТЕОРЕМА 1 о корне многочлена Если число а является корнем многочлена Р(х) =а 0 х n +а 1 х n-1 +…..+а n-1 х+а n,где а 0 =0, то этот многочлен можно представить в виде произведения (х а) P 1 (х), где P 1 (х) многочлен n - 1-й степени. Эта теорема позволяет решение целого уравнения п-й степени, для которого известен один из корней, свести к решению уравнения n - 1-й степени, в частности, от уравнения третьей степени перейти к квадратному. Если целое уравнение с одной переменной, с целыми коэффициентами имеет целый корень, то его можно найти, используя теорему о целых корнях целого уравнения.

ТЕОРЕМА 2 о целых корнях целого уравнения Если уравнение а 0 х n + a 1 х n а n-1 х+а n =0, в котором все коэффициенты целые числа, причем свободный член отличен от нуля, имеет целый корень, то этот корень является делителем свободного члена. Пусть х 0 целый корень данного уравнения. Тогда верно равенство а 0 х o n + а 1 x n а n-1 х 0 + а n = 0. Отсюда а n =-а 0 х 0 n а 1 х о n-1... а n-1 х 0 а n = х o (-a 0 х 0 n-1 – а 1 х 0 n-2 -…..-а n-1 ) Число, записанное в этом равенстве в скобках, является целым, так как х 0 и все коэффициенты - а 0,-а 1,…..,-а n-1 целые числа. Значит, при делении а n на х 0 получается целое число, т. е. х 0 делитель свободного члена.