Симметрия. Виды симметрии. 1. повторить осевую и центральную симметрии; 2. познакомиться с зеркальной симметрией; 3. закрепить знания по видам симметрии.

Презентация:



Advertisements
Похожие презентации
Симметрия в пространстве «Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман.
Advertisements

Урок геометрии в 9 классе. Симметрия осевая центральная зеркальная.
Я в листочке, я в кристалле, Я в живописи, архитектуре, Я в геометрии, я в человеке. Одним я нравлюсь, другие Находят меня скучной. Но все признают, что.
Работу выполнили ученики 10 «А» класса: Метельков Григорий, Кузьмичев Никита И Смолянинов Дмитрий.
Цели урока: ввести и обеспечить усвоение понятия симметрии; рассмотреть виды симметрии; формировать умение видеть явления симметрии в окружающем мире;
СИММЕТРИЯ «СИММЕТРИЯ» - соразмерность, одинаковость в расположении частей чего – либо по противоположным сторонам от точки, прямой или плоскости.
«Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман Вейль А А1А1 О Точки А и.
Презентация к уроку по геометрии (8 класс) на тему: Осевая и центральная симметрии
Симметрия относительно прямой Осевая симметрия Две точки А и А 1 называются симметричными относительно прямой l, если эта прямая проходит через.
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Симметрия вокруг нас. Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и созидать порядок, красоту и совершенство.
ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ Работа выполнена учителем МОАУ СОШ с УИОП 48 Шамовой Л.Н.
А А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1. Точка О считается симметричной.
Учитель математики: Соловьева Марина Германовна МОУ СОШ 27 г. Комсомольск-на-Амуре.
Симметрия в пространстве. Центр симметрии Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА.
Древняя китайская мудрость гласит: Я слышу – я забываю, я вижу – я запоминаю, я делаю – я понимаю.
Косулиной Анны 8 «А» класс Осевая и центральная симметрии.
Симмерия относительно прямой
Симметрия Выпускная работа учителей математики: 1 Бармотина И.И. средняя школа 7 2 Мензорене Т. А. Рускеальская основная школа 3 Волкова Т. В. Кааламская.
«В геометрии есть своя красота, как в поэзии » А.С.Пушкин.
Транксрипт:

Симметрия. Виды симметрии

1. повторить осевую и центральную симметрии; 2. познакомиться с зеркальной симметрией; 3. закрепить знания по видам симметрии Цель урока: Введение в тему «Движения» Задачи урока:

Я в листочке, я в кристалле, Я в живописи, архитектуре, Я в геометрии, я в человеке. Одним я нравлюсь, другие Находят меня скучной. Но все признают, что Я – элемент красоты.

«Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство» Герман Вейль

Центральная симметрия Точки А 1 и А 2 называются симметричными относительно точки О, если О – середина отрезка А 1 А 2 А1А1 А2А2 О О Р Q M M1M1 N N1N1 А 1 О = ОА 2 Точка О – центр симметрии

Центральная симметрия фигур

Центральная симметрия А В С А1А1 С1С1 А 1 = Z о (А) В 1 = Z о (В) С 1 = Z о (С) АВ С О С1С1 А1А1 В1В1 А 1 В 1 С 1 = Z о ( АВС) О А С В А1А1 В1В1 С1С1

Осевая симметрия Точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему. а А А1А1 а – ось симметрии А 1 = S а (А) Р М М1М1 b N N1N1 Точка Р симметрична самой себе относительно прямой b

Фигуры, обладающие центральной и осевой симметрией О В А L N D С Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. КМ EP b T Q

Определить фигуры: обладающие центральной симметрией и указать их центр; обладающие осевой симметрией и указать ось симметрии; имеющие обе симметрии.

Фигуры, обладающие центральной симметрией Фигуры, обладающие осевой симметрией Фигуры, имеющие обе симметрии

Задача 420. Докажите, что прямая, содержащая биссектрису равнобедренного треугольника, проведенную к основанию, является осью симметрии треугольника. Дано: АВС – равнобедренный, АС – основание, ВD – биссектриса, ВD k, k – прямая Доказать: k– ось симметрии А В С D k

Практическая работа Ж У Н Г О Ш Б П Т

Зеркальная симметрия «Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале «нельзя поставить на место настоящей руки…» Иммануил Кант

На зеркальной поверхности Сидит мотылек. От познания истины Бесконечно далек. Потому что, наверное, И не ведает он, Что в поверхности зеркала Сам отражен. Леонид Мартынов