Арифметическая и геометрическая прогрессии. Алгебра 9 класс Составитель: Сащенко Г.В.

Презентация:



Advertisements
Похожие презентации
АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ. Содержание Организационный момент. Исторические сведения о прогрессиях. Прогрессии в жизни и быту. Тестовые.
Advertisements

Презентацию выполнили Ученицы 9 «А» класса Средней школы 1980 Разук Юлия и Давидян Берта.
Последовательности и прогрессии.. ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ В повседневной практике часто используется нумерация предметов, чтобы указать порядок их.
Сумма n первых членов геометрической прогрессии..
Последовательности 2011 Васильева Е.Е.. Продолжи ряд 1)1, 2, 3, 4, 5, 6 2)12, 10, 8, 6, 4 3)6, 9, 12, 15, 18, 21 4)2, 4, 8, 16, 32 5)1, 4, 16.
Древнеиндийский царь Шерам пожелал наградить изобретателя шахмат древнеиндийского ученого Сету.
числовая последовательность, если для всех натуральных n выполняется равенство b n+1 =b n *q где q - некоторое число.
Геометрическая прогрессия Решение задач Урок алгебры 9 класс Учебник: Алимов Ш.А. Учитель: Постнова А.Ю учебный год.
Арифметическая прогрессия - числовая последовательность определяемая условиями: 1)а 1= а, 2) а n-1 +d (n = 2, 3, 4, …) (d - разность арифметической прогрессии).
Закончился XX век. Куда стремится человек? Изучен космос и моря, Строенье звёзд и вся Земля. Но математиков зовёт Известный лозунг: Прогрессио – движение.
Презентацию составил Левенсон Семен – учащийся 9 класса Пойковской школы 1 учитель –Новокрещенова В.С.
(Алгебра – 9). Шахматы – одна из самых древних игр. Она существует уже многие века и неудивительно, что с нею связаны различные придания, правдивость.
Геометрической прогрессия-это последовательность чисел, каждый член которой, начиная со второго отличается от предыдущего в одно и тоже число раз (первый.
Учитель математики МБОУСОШ 3 г. Кстово Малова Татьяна Николаевна Учитель математики МБОУСОШ 3 г. Кстово Малова Татьяна Николаевна.
Задачи на сумму арифметической и геометрической прогрессии. Манжура Никита и Баранов Дмитрий 9 «А» класс.
9 КЛАСС Н ОВОСЁЛОВА Е.А. МОУ «У СТЬ -М ОСИХИНСКАЯ СОШ» Сумма n первых членов геометрической прогрессии.
Сумма n-первых членов геометрической прогрессии. Цели урока Образовательные: Повторить формулы, относящие к данной теме; Учиться применять полученные.
ТЕМА УРОКА «Арифметическая и геометрическая прогрессия»
Арифметическая и геометрическая прогрессия Закончился двадцатый век. Куда стремится человек? Изучены космос и море, Строенье звёзд и вся земля. Но математиков.
Арифметическая и геометрическая прогрессии. Задача с историей: В древней Индии шах Шерам посулил любую награду за интересную игру, к которой он долгой.
Транксрипт:

Арифметическая и геометрическая прогрессии. Алгебра 9 класс Составитель: Сащенко Г.В.

«ПРОГРЕССИЯ» - ЛАТИНСКОЕ PROGRESSIO – ДВИЖЕНИЕ ВПЕРЕД.

Арифметическая прогрессия – числовая последовательность a 1 a 2 …a n в которой для всех натуральных n выполняется равенство a n+1 =a n + d, где d- некоторое число

Формулы Формула n-го члена арифметической прогрессии a n = a 1 +(n-1)d Формула n-го члена арифметической прогрессии a n = a 1 +(n-1)d Формула суммы n первых членов арифметической прогрессии Формула суммы n первых членов арифметической прогрессии S n =1|2(a 1 +a n ) n S n =1|2(a 1 +a n ) n

К.Гаусс Учитель дает ученикам задачу: Найти сумму всех чисел от 1до99. Шестилетний Гаусс моментально находит ответ на эту задачу, его рассуждения легли в формулу S n =n(a 1 +a n ): 2 Учитель дает ученикам задачу: Найти сумму всех чисел от 1до99. Шестилетний Гаусс моментально находит ответ на эту задачу, его рассуждения легли в формулу S n =n(a 1 +a n ): 2

Геометрическая прогрессия-числовая последовательность b 1 b 2 … b n … в которой для всех натуральных n выполняется равенство b n+1 =b 1 g, где g- некоторое число не равное нулю.

Формулы Формула n-ого члена геометрической прогрессии b n =b 1 g n-1 Формула n-ого члена геометрической прогрессии b n =b 1 g n-1 Сумма n-первых членов геометрической прогрессии Сумма n-первых членов геометрической прогрессии S n =b 1 (1-g n )/(1-g) S n =b 1 (1-g n )/(1-g)

Задача - легенда

Индийский царь Шерам позвал к себе изобретателя шахматной игры, своего подданного Сету, чтобы наградить его за остроумную выдумку. Сета потребовал в награду зерно: за первую клетку 1 пшеничное зернышко, за вторую-2, за третью-4 и т.д. Оказалось что не хватит всего зерна в царских закромах, чтобы выполнить эту просьбу Сеты. Индийский царь Шерам позвал к себе изобретателя шахматной игры, своего подданного Сету, чтобы наградить его за остроумную выдумку. Сета потребовал в награду зерно: за первую клетку 1 пшеничное зернышко, за вторую-2, за третью-4 и т.д. Оказалось что не хватит всего зерна в царских закромах, чтобы выполнить эту просьбу Сеты.

Исторические сведения Правило нахождения суммы членов арифметической прогрессии впервые встречаетсяв «Книге абака» (1202г.)Леонардо Пизанского. Правило нахождения суммы членов арифметической прогрессии впервые встречаетсяв «Книге абака» (1202г.)Леонардо Пизанского.

Задача из «Арифметики» Магницкого Задача из «Арифметики» Магницкого Некто продавал коня и просил за него 1000 рублей. Купец сказал, что за коня запрошена слишком большая цена. «Хорошо, -ответил продавец, -если ты говоришь, что конь стоит дорого, то возьми его себе даром, а заплати только за одни только гвозди в его подковах». Выгодна ли сделка? Некто продавал коня и просил за него 1000 рублей. Купец сказал, что за коня запрошена слишком большая цена. «Хорошо, -ответил продавец, -если ты говоришь, что конь стоит дорого, то возьми его себе даром, а заплати только за одни только гвозди в его подковах». Выгодна ли сделка?

Удачи!!! Удачи!!!