БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ОСНОВНЫЕ ЛОГИЧЕСКИЕ СХЕМЫ Яхина Рита Альфировна преподаватель высшей квалификационной категории компьютерных дисциплин председатель предметно-цикловой комиссии специальности «Информационные системы» ( )
ПРОВЕРОЧНОЕ ЗАДАНИЕ ДАНЫ ФУНКЦИИ. ДОКАЗАТЬ ЯВЛЯЮТСЯ ЛИ ДАННЫЕ ФУНКЦИИ ТОЖДЕСТВЕННО ИСТИННЫМИ, ЛОЖНЫМИ ИЛИ ВЫПОЛНИМЫМИ. F=(Х v У) ^ Х
ПРОВЕРОЧНОЕ ЗАДАНИЕ ДАНЫ ФУНКЦИИ. ДОКАЗАТЬ ЯВЛЯЮТСЯ ЛИ ДАННЫЕ ФУНКЦИИ ТОЖДЕСТВЕННО ИСТИННЫМИ, ЛОЖНЫМИ ИЛИ ВЫПОЛНИМЫМИ F=(Х v У) ^ Х XYXvY (XvY)^X F=(XvY)^X
ПРОВЕРОЧНОЕ ЗАДАНИЕ ДАНЫ ФУНКЦИИ. ДОКАЗАТЬ ЯВЛЯЮТСЯ ЛИ ДАННЫЕ ФУНКЦИИ ТОЖДЕСТВЕННО ИСТИННЫМИ, ЛОЖНЫМИ ИЛИ ВЫПОЛНИМЫМИ. F=(Х v У) ^ Х XYX XvY(XvY)^X F=(XvY)^X
ПРОВЕРОЧНОЕ ЗАДАНИЕ ДАНЫ ФУНКЦИИ. ДОКАЗАТЬ ЯВЛЯЮТСЯ ЛИ ДАННЫЕ ФУНКЦИИ ТОЖДЕСТВЕННО ИСТИННЫМИ, ЛОЖНЫМИ ИЛИ ВЫПОЛНИМЫМИ. F=(Х v У) ^ Х Тождественно истинная функция Выполнимая функция
БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ БАЗОВЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ ОСНОВНЫЕ ЛОГИЧЕСКИЕ СХЕМЫ
ОСНОВНЫЕ ЛОГИЧЕСКИЕ БЛОКИ КОМПЬЮТЕРА СУММАТОРЫ СЧЕТЧИКИ ДЕШИФРАТОРЫ ТРИГГЕРЫ РЕГИСТРЫ
ЛОГИЧЕСКИЕ БЛОКИ КОМПЬЮТЕРА
1 1 В1 (S) В2 (R) C1 C2 Рис. RS – триггер с прямыми входами ТРИГГЕРЫ Логическая структура ТРИГГЕРА
SCRSCR SCRSCR SCRSCR T T T anan a n-1 a1a1 ānān ā n-1 ā1ā1 РЕГИСТРЫ
СУММАТОРЫ Логическая структура СУММАТОРА
ДЕШИФРАТОРЫ DD СВ DC DD СВ DC 1 DD3
СЧЕТЧИКИ Логическая структура СЧЕТЧИКА
Двоичные переменные, входящие в логические уравнения, можно представить двумя различными электрическими сигналами (0 или 1) 0 1
Логическая величина – это величина, которая может принимать только два значения Низкий0ВыключеноOFFLЛожь Высокий 1ВключеноONHИстина
ЛОГИЧЕСКИЙ ЭЛЕМЕНТ – ЭЛЕКТРОННОЕ УСТРОЙСТВО, КОТОРОЕ РЕАЛИЗУЕТ ЭЛЕМЕНТАРНУЮ ПЕРЕКЛЮЧАТЕЛЬНУЮ ФУНКЦИЮ
ЛОГИЧЕСКАЯ СХЕМА – СОВОКУПНОСТЬ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ
ПРИ ВЫПОЛНЕНИИ ПЕРЕКЛЮЧЕНИЯ ВХОДНЫЕ ПЕРЕМЕННЫЕ ОТОЖДЕСТВЛЯЮТСЯ С ВХОДНЫМИ СИГНАЛАМИ, ПОСТУПАЮЩИМИ НА СХЕМУ
Выходной сигнал представляет собой значение функций ВЫХОДНОЙ СИГНАЛ СХЕМЫ
ВЫХОДНОЙ СИГНАЛ СХЕМЫ ПРЯМОЙ ИНВЕРСНЫЙ
либо в виде выражения алгебры логики ХУ ЗАКОН ФУНКЦИОНИРОВАНИЯ СХЕМЫ задается либо таблицей истинности, задается либо таблицей истинности, У = Х1^Х2
ОСНОВНЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ
УГО 1 ХУ ТАБЛИЦА ИСТИННОСТИ ХУ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ НЕ Функция У= Х Название функции: НЕ – отрицание ОПЕРАЦИЯ - Инверсия
УГО ТАБЛИЦА ИСТИННОСТИ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ И Функция У= Х1*Х2 У = Х1^Х2 Название функции: И – умножение ОПЕРАЦИЯ - Конъюнкция, * Х1Х2У Х1 У Х2
УГО ТАБЛИЦА ИСТИННОСТИ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ИЛИ Функция У= Х1+Х2 У = Х1 v Х2 Название функции: ИЛИ – сложение ОПЕРАЦИЯ – Дизъюнкция v, * 1 Х1 У Х2 Х1Х2У
УГО ТАБЛИЦА ИСТИННОСТИ Название функции: И - НЕ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ И - НЕ Х1 У Х2 Х1Х2У Функция У= Х1*Х2 У = Х1^Х2
УГО ТАБЛИЦА ИСТИННОСТИ Название функции: ИЛИ- НЕ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ ИЛИ - НЕ 1 Х1 У Х2 Х1Х2У Функция У= Х1+Х2 У = Х1vХ2
ХАРАКТЕРИСТИКИ ЛОГИЧЕСКИХ СХЕМ НАГРУЗОЧНАЯ СПОСОБНОСТЬ ВОЗМОЖНОСТЬ ОБЪЕДИНЕНИЯ ВЫХОДОВ КОЭФФИЦИЕНТ ОБЪЕДИНЕНИЯ ПО ВХОДУ БЫСТРОДЕЙСТВИЕ
ОСОБЕННОСТИ ПОСТРОЕНИЯ СХЕМ ЛОГИЧЕСКИХ УСТРОЙСТВ СИНТЕЗ СХЕМ
ЗАДАНИЕ 1 СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ СХЕМЫ У Х1 Х2
ЗАДАНИЕ СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ СХЕМЫ Х У Х1 Х2У
ЗАДАНИЕ 2 СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ СХЕМЫ Х У Х2 Х3
ЗАДАНИЕ СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ СХЕМЫ Х У Х2 Х3 Х3 Х1Х2Х3У
СИНТЕЗ СИНТЕЗ ЛОГИЧЕСКИХ ФУНКЦИИ
ПО ЗАДАННОЙ ФУНКЦИИ ПОСТРОИТЬ СХЕМУ И СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ У = (Х1 + Х2) * Х3 + Х2 Входных переменных – 3 (Х1, Х2, Х3) Выходная переменная – У
ПО ЗАДАННОЙ ФУНКЦИИ ПОСТРОИТЬ СХЕМУ И СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ ПО ЗАДАННОЙ ФУНКЦИИ ПОСТРОИТЬ СХЕМУ И СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ У = (Х1 + Х2) * Х3 + Х У Х1 Х2 Х3
У = (Х1 + Х2) * Х3 + Х У Х1 Х2 Х3 Х1Х2Х3У
ЗаданиеПо заданной функции построить схему и составить таблицу истинности Задание По заданной функции построить схему и составить таблицу истинности У = (Х1*Х3) + (Х1+Х2)
Задание По заданной функции построить схему и составить таблицу истинности Задание По заданной функции построить схему и составить таблицу истинности У = (Х1*Х3) + (Х1+Х2) Х1Х2Х3У У Х1 Х2 Х3 1
СОСТАВЛЕНИЕ ЛОГИЧЕСКИХ ФУНКЦИИ ПО СХЕМАМ
1 1 1 У Х1 Х2 Х3 ЗАДАНИЕ НАПИСАТЬ ФУНКЦИЮ ДЛЯ ДАННОЙ СХЕМЫ
1 1 1 У Х1 Х2 Х3 У=((Х2+Х3) +Х1)*Х2+Х1
ДОМАШНЕЕ ЗАДАНИЕ По заданным функциям построить схемы и составить таблицы истинности 1. У = ((Х2+Х3) * Х1)+Х2) 2. У = Х1+(Х2* Х3)+Х2)
Спасибо за внимание !