В ИДЫ СОЕДИНЕНИЙ В КОМБИНАТОРИКЕ МКОУ СОШ 2 п. Суна Кировской области учитель математики высшей категории Николаева Ирина Сергеевна 2012 г.

Презентация:



Advertisements
Похожие презентации
Комбинаторика – раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации,
Advertisements

Комбинаторика Лейбниц, 1666 год «Рассуждения о комбинаторном искусстве»
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Определение Область математики, в которой изучают комбинаторные задачи, называется комбинаторикой.
Урок 2 « Формулы для подсчёта количества перестановок, сочетаний, размещений»
К ОМБИНАТОРИКА. Решение задач. Орлова Л.В., Малышкина С.Ю.
Правило умножения Если элемент А можно выбрать m способами, а элемент В можно выбрать n способами, то пару А и В можно выбрать m*n способами.
Решение комбинаторных задач Решение комбинаторных задач.
Элементы статистики и вероятность. Алгебра. 7-9 класс. Автор: Рыженко Е.В. МОУ « СОШ 64» г. Астрахань.
Решение комбинаторных задач Решение комбинаторных задач Конкурс презентаций: «Интерактивная мозаика» pedsovet.su Перешивкина Анна Юрьевна ГБОУ школа 494.
Глава 9. Элементы математической статистики, комбинаторики и теории вероятностей §52. Сочетания и размещения. Часть II Цыбикова Тамара Раднажаповна, учитель.
LOGO Элементы комбинаторики..
КомбинаторикаКомбинаторика. Цель урока: Рассмотреть, что изучает комбинаторика, ввести правила суммы и произведения и показать их применение при решении.
Средняя школа 46 ШЕСТЬ УРОКОВ ПО КОМБИНАТОРИКЕ В 7-м КЛАССЕ Белгород 2005 Тарасова А.М.
Проект подготовили ученики 6 «Б» класса Ильчишина Елена Александров Илья Смирнов Николай Руководитель проекта: Ингинен О.В. Луга, 2013.
Выполнила ученица 5 а класса Пятакова Дарья. Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов.
РАЗДЕЛ 8 Элементы теории вероятностей и математической статистики.
1 Теория вероятностей и математическая статистика Занятие 1. Элементы комбинаторики. Определение вероятности. Простейшие задачи Преподаватель – доцент.
КОМБИНАТОРИКА Выполнила: ученица 11 класса МОШ I-III ступеней 2 Посадская Татьяна Учитель: Богомолова И.В.
Правила комбинаторики Основные понятия. КОМБИНАТОРИКОЙ называется раздел математики, в котором исследуется, сколько различных комбинаций (всевозможных.
Транксрипт:

В ИДЫ СОЕДИНЕНИЙ В КОМБИНАТОРИКЕ МКОУ СОШ 2 п. Суна Кировской области учитель математики высшей категории Николаева Ирина Сергеевна 2012 г.

Ц ЕЛИ ТЕМЫ : обучающая: знакомство с теорией соединений как самостоятельным разделом математики, обоснование формулы бинома Ньютона; развивающая: развитие комбинаторного мышления и познавательного интереса учащихся; воспитательная: овладение аппаратом решения вероятностных задач (умственное воспитание).

Ч ТО ИЗУЧАЕТ КОМБИНАТОРИКА ? Комбинаторика – раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составляемой по заданным правилам.

В ОЗНИКНОВЕНИЕ КОМБИНАТОРИКИ Еще математикам Древнего Востока была известна формула бинома Ньютона с натуральным показателем. Рождение комбинаторики как раздела математики связано с трудами Б Паскаля и П.Ферма по теории азартных игр. Большой вклад в развитие комбинаторных методов был сделан Г.Лейбницем, Я.Бернулли, Л.Эйлером. В настоящее время комбинаторика используется в кибернетике, дискретной математике, теории планирования и теории информации, архитектуре, дизайне интерьера.

С АМЫЙ ПРОСТОЙ МЕТОД РЕШЕНИЯ КОМБИНАТОРНЫХ ЗАДАЧ – ПЕРЕБОР ВСЕХ ВОЗМОЖНЫХ ВАРИАНТОВ Подсчитать число однобуквенных слов русского языка. Ответ:11 Перечислить виды: 1)треугольников, 2)четырехугольников. Ответ:1)равносторонний, равнобедренный, разносторонний; остроугольный, прямоугольный, тупоугольный. 2) параллелограмм, прямоугольник, ромб, квадрат, трапеция. В магазине продают бейсболки трех цветов: синие, красные и черные. Ваня и Андрей покупают себе по одной. Сколько существует различных вариантов покупки? Ответ:9 вариантов.

П ОЛНЫЙ ПЕРЕБОР МОЖЕТ ОСУЩЕСТВЛЯТЬСЯ С ПОМОЩЬЮ ДЕРЕВЬЕВ С помощью цифр 3 и 5 записать все возможные трёхзначные числа (цифры могут повторяться). Ответ: 8 чисел.

П ОЛНЫЙ ПЕРЕБОР МОЖЕТ ОСУЩЕСТВЛЯТЬСЯ С ПОМОЩЬЮ ТАБЛИЦ И ГРАФОВ Встретились пятеро, каждый пожал другому руку. Сколько было рукопожатий? Ответ:10. С помощью таблицы вариантов перечислить все возможные двухбуквенные коды, в которых используются буквы: x,y,z. Ответ: 9. xyz xxxxyxz yyxyyyz zzxzyzz

П РАВИЛО ПРОИЗВЕДЕНИЯ При большом количестве имеющихся элементов полный перебор затруднителен. Правило произведения позволяет упростить подсчет числа определенных соединений. Сформулируем это правило. Если существует вариантов выбора первого элемента и для каждого из них имеется вариантов выбора второго элемента, то существует различных пар с выбранными первым и вторым элементами. Задача 1. Сколько различных двузначных чисел можно записать с помощью цифр 0,2,4,6,8? Ответ: 45 = 20.

О БОБЩЕНИЕ ПРАВИЛА ПРОИЗВЕДЕНИЯ Задача 2. В кафе имеются 3 первых блюда, 5 вторых и 2 третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд? Ответ:352 = 30. Задача 3. Пётр решил пойти на новогодний карнавал в костюме мушкетёра. В ателье проката ему предложили на выбор различные по цвету и фасону предметы: 5 пар брюк, 6 камзолов, 3 шляпы, 2 пары сапог. Сколько различных карнавальных костюмов он может составить из этих предметов? Ответ: 5632 = 180.

О СНОВНЫЕ ЗАДАЧИ КОМБИНАТОРИКИ Основными задачами комбинаторики считаются следующие: составление упорядоченных множеств (образование перестановок); составление подмножеств данного множества (образование сочетаний) составление упорядоченных подмножеств данного множества (образование размещений). Чтобы отличать задачи на подсчёт числа размещений от задач на подсчёт числа сочетаний, определим, важен или нет порядок в следующих выборках: а) судья хоккейного матча и его помощник; б) три ноты в аккорде; в) «Шесть человек останутся убирать класс!» г) две серии для просмотра из многосерийного фильма. Ответ: а)да; б)нет; в)нет; г)да.

У ЧИМСЯ РАЗЛИЧАТЬ ВИДЫ СОЕДИНЕНИЙ Перестановки из элементов Сколькими способами можно с помощью букв A,B,C,D обозначить вершины четырехугольника? Меняется только порядок расположения выбранных элементов Сочетания из элементов по элементов У лесника три собаки: Астра, Вега и Граф. На охоту лесник решил пойти с двумя собаками. Перечислите все варианты выбора лесником пары собак. Меняется только состав входящих в комбинацию элементов, порядок их расположения не важен Размещения из элементов по элементов Сколькими способами могут быть распределены I, II и III премии между 15-ю участниками конкурса? Меняется состав входящих в комбинацию элементов и важен порядок их расположения

П ЕРЕСТАНОВКИ Перестановками из элементов называются соединения, которые состоят из элементов и отличаются одно от другого только порядком их расположения. Permutation (фр.) – перестановка. Задача. Сколькими способами можно расположить в столбик три детали конструктора, различающиеся по цвету? Ответ:6.

Р АЗМЕЩЕНИЯ Размещениями из элементов по элементов ( ) называются такие соединения, каждое из которых содержит элементов, взятых из данных разных элементов, и которые отличаются одно от другого либо самими элементами, либо порядком их расположения. Задача 1. Сколькими способами можно изготовить трёхцветный флаг с горизонтальными полосами, если имеется материал 7 различных цветов? Ответ: 210.

Р АЗМЕЩЕНИЯ Задача 2. Сколькими способами могут занять I, II, III места 8 участниц финального забега на дистанции 100 м? Ответ: 366. Задача 3. Из 30 участ- ников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать? Ответ: 870.

С ОЧЕТАНИЯ Сочетаниями из элементов по элементов ( ) называются такие соединения, каждое из которых содержит элементов, взятых из данных элементов, и которые отличаются друг от друга по крайней мере одним элементом. Задача 1. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде? Ответ: 21.

С ОЧЕТАНИЯ Задача 2. Сколькими способами можно соста- вить букет из трёх цвет- ков, выбирая цветы из девяти имеющихся? Ответ: 84. Задача 3. В классе учатся 16 мальчиков и 12 девочек. Сколькими способами можно выделить 4 мальчиков и 3 девочек для уборки территории? Ответ:

Б ИНОМ Н ЬЮТОНА Бином Ньютона – это выражение вида Треугольником Паскаля пользуются при возведении бинома в натуральные степени. Примеры.

П РОВЕРЬ СЕБЯ 1. Сколькими способами 4 вора могут разбежаться на 4 разные стороны? 2. Из колоды в 36 карт выбирают 5 карт и одновременно открывают их. Найдите число всех возможных вариантов выбранных карт. 3. Сколькими способами из класса, где учатся 24 ученика, можно выбрать: а)двух дежурных; б)старосту и помощника старосты? Ответ: а)276; б) «Проказница Мартышка, Осёл, Козёл да косолапый Мишка задумали сыграть квартет». Сколькими способами они могут выбрать каждый для себя по одному инструменту из 10 данных различных инструментов? Ответ:

О ПОЛЬЗЕ КОМБИНАТОРИКИ ИЛИ ЛИШНИХ ЗНАНИЙ НЕ БЫВАЕТ

Л ИТЕРАТУРА 1. Колягин Ю.М. и др. Алгебра и начала математического анализа. Учебник для общеобразовательных учреждений. Базовый и профильный уровни. Под ред. А.Б.Жижченко. – М., Просвещение, Федорова Н.Е., Ткачёва М.В. Изучение алгебры и начал математического анализа в 11 классе. Книга для учителя. – М., Просвещение, Решение задач по статистике, комбинаторике и теории вероятностей. Автор-составитель В.Н.Студеникина. – Волгоград, издательство «Учитель», 2006.