y = f(x), M Є y, т.е. М(a; f(a)). Касательная – прямая, значит, уравнение касательной – уравнение прямой, т. е. имеет вид y = kх+m k – угловой коэффициент.

Презентация:



Advertisements
Похожие презентации
Уравнение касательной к графику функции. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII.
Advertisements

© Максимовская М.А., 2009 год. Y X 0x0x0 x f f(x 0 ) x 0 + x f(x 0 + x) x f A B C.
Уравнение касательной 1 урок. Геометрический смысл производной заключается в том, что значение производной функции y = f(x) в точке х есть тангенс угла.
Уравнение касательной. Ответьте на вопрос: *Графиком какой функции является прямая? ( линейной) *Уравнение прямой? ( y= k x + b) *Как называется коэффициент.
Уравнение касательной.. Укажите точки, в которых производная равна 0 или не существует.
Уравнение касательной к графику функции Алгебра и начала анализа 11 класс х у О ГОУ школа 564, Николаева С.М.
х y 0 k – угловой коэффициент прямой (касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту.
На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х 0. х х 0 х 0 у острый.
Классная работа. Уравнение касательной к графику функции У уравнение касательной к графику к графику функции 10 б класс Учитель Андрющук Н.М.
«Касательная к графику функции» ВЫПОЛНИЛ: учитель математики высшей категории МОУ «СОШ 1» Города Магнитогорска Пупкова Татьяна Владимировна.
A B C D E x y 0 В каких точках графика функции f касательная к нему: а) горизонтальна б) образует с осью абсцисс острый угол в) образует с осью абсцисс.
Х y 0 k – угловой коэффициент прямой (касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту.
Уравнение касательной. МБОУ гимназия 3 г. Мурманска Шахова Татьяна Александровна.
На рисунке изображен график функции у =f(x) и касательная к нему в точке с абсциссой х 0. Найдите значение производной в точке х Подумай! Верно!
х y 0 k – угловой коэффициент прямой (касательной) Касательная Геометрический смысл производной Производная от функции в данной точке равна угловому коэффициенту.
Уравнение касательной к графику функции. 11 класс Математический профиль УМК «Алгебра и начала анализа» С.М. Никольский и др. Учитель Злобина Э.В.
X 0 1 y xoxo y=f(x) к а с а т е л ь н а я f / (x o )=-5 f / (x o )=-3 f / (x o )=1 f / (x o )=-1 f / (x o )=k.
Производная и ее применение. Содержание : Справочные сведения : Геометрический смысл производной слайды 3-6 Задание 1 слайд 7 Задание 2 слайд 8 Уравнение.
Геометрический смысл производной на уроке и в заданиях ЕГЭ.
Тема: Производная степенной функции. Ее геометрический смысл. Цель урока: Обобщить и систематизировать знания по теме с помощью вариативности и наглядности.
Транксрипт:

y = f(x), M Є y, т.е. М(a; f(a)). Касательная – прямая, значит, уравнение касательной – уравнение прямой, т. е. имеет вид y = kх+m k – угловой коэффициент k = f´ (a) М принадлежит касательной, значит, f(a) =ka+m, m = f(a) – ka y = f(x) X Y M O a

k = f´ (a)m = f(a) – ka тогда y = k x + m принимает вид y = k x + f(a) – ka y = f(a) + k x– ka y = f(a) + k (x– a) y = f(a) + f ´(a)(x– a) уравнение касательной к графику функции y = f(x) в точке x = a

1.Вычислить f (a). 2. Найти f' (x). 3. Вычислить f' (a) 4. Подставить найденные значения в формулу y = f (a) + f ' (a)(x – a) a – абсцисса точки касания

Cоставить уравнение касательной к графику функции y = 2x 2 – 3x в точке a = f(4) = 2 ·4 2 – 3 · 4 = f' (х) =2 · 2х - 3 ·1 =4х f' (4) =4·4 – 3 =13 y = f (а)+f' (а)(x –а ) = 13 x – 32 Итак, уравнение касательной у = 2х 2 – 4х в точке х = 4 имеет вид у = 13 х – 32