Квадратные уравнения Определение. Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Решение кв. уравнений с.

Презентация:



Advertisements
Похожие презентации
Квадратные уравнения Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Древнем Вавилоне. Кв. уравнения в Индии. Кв. уравнения в Индии. Квадратные уравнения.
Advertisements

1. Сформулируйте определение квадратного уравнения; 2. Назовите виды квадратных уравнений; 3. Расскажите алгоритм решения квадратного уравнения по формуле.
Способы решения.. Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные.
Теорема Виета Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно.
Теорема Виета. ФРАНСУА ВИЕТ (Вьета) Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591.
Алгебра 8 класс Теорема Виета. ФРАНСУА ВИЕТ (Вьета) Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована.
Классная работа Урок 2. Определение Квадратным уравнением называется уравнение вида:
Открыть Способы решений полных квадратных уравнений. Разложение Выделение Теорема Виета «Переброска» Свойство коэффициентов Графическое решение Выйти С.
Сатиев Ахмед Ученик 8 « г » класса Школы 36. Квадратным уравнением называется уравнение вида ах 2 + bx + c = 0, где а, b, с – числа, а 0, х – неизвестное.
Способ 1. Разложение левой части уравнения на множители. Ответ: 5; х - 8 х.
10 способов решения квадратных уравнений Работу выполнила учитель математики МБОУ « СОШ 31» г. Энгельса Волосожар М. И.
Теорема Виета. Н. Тарталья Д. Кардано Н. Тарталья Д. Кардано.
Составитель: Учитель математики МОУ «СОШ с. Липовка Духовницкого района Саратовской области» Евсеева Е. М. Теорема Виета.
Уравнения Определения Равенство с переменной g(x) = f(x) называется уравнением с одной переменной х. Всякое значение переменной, при котором f(x) и g(x)
Какое уравнение с одной переменной называется целым?
Теорема Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие.
Квадратный трехчлен. Квадратичная функция. Квадратные уравнения. Разложение квадратного трехчлена на множители. (8 класс)
«Приведенное квадратное уравнение. Теорема Виета».
С в о й с т в а к о р н е й к в а д р а т н о г о у р а в н е н и я.
Обобщающий урок по теме. «Тысячная задача по алгебре»
Транксрипт:

Квадратные уравнения Определение. Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Решение кв. уравнений с помощью графиков. Разложение кв. трехчлена на множители. Применение кв. уравнений.

Определение Главное менюГлавное меню Уравнение вида ax^2+bx+c=0, где a, b, c - действительные числа, причем a не равно 0, называют квадратным уравнением. Если a = 1, то квадратное уравнение называют приведенным; если a ¹ 1, то неприведенным. Числа a, b, c носят следующие названия:a -первый коэффициент, b - второй коэффициент, c - свободный член. Корни уравнения ax^2+bx+c=0 находят по формуле Выражение D = b^2- 4ac называют дискриминантом квадратного уравнения. Если D < 0, то уравнение не имеет действительных корней; если D = 0, то уравнение имеет один действительный корень; если D > 0, то уравнение имеет два действительных корня. В случае, когда D = 0, иногда говорят, что квадратное уравнение имеет два одинаковых корня. Используя обозначение D = b^2- 4ac, можно переписать формулу в виде Если b = 2k, то формула принимает вид: Итак, где k = b / 2. Последняя формула особенно удобна в тех случаях, когда b / 2 - целое число, т.е. коэффициент, b - четное число.

Неполные кв. уравнения Главное менюГлавное меню Если в квадратном уравнении ax^2+bx+c=0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным. Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители. Способы решения неполных квадратных уравнений: 1) c = 0, то уравнение примет вид ax^2+bx=0. x( ax + b ) = 0, x = 0 или ax + b = 0, x = -b : a. 2) b = 0, то уравнение примет вид ax^2 + c = 0, x2 = -c : a, x1 = или x2 = - 3) b = 0 и c = 0, то уравнение примет вид ax2 = 0, x =0.

Полное квадратное уравнение Главное меню Главное меню Если в квадратном уравнении второй коэффициент и свободный член не равны нулю, то такое уравнение называют полным квадратным уравнением.

Теорема Виета Главное меню Главное меню Теорема. Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Доказательство. Рассмотрим приведённое квадратное уравнение. Обозначим второй коэффициент буквой p, а свободный член - буквой q: Дискриминант этого уравнения D равен: Пусть D>0.Тогда это уравнение имеет два корня: и Найдём сумму и произведение корней:

Теорема, обратная теореме Виета. Главное менюГлавное меню Теорема. Если числа m и n таковы, что их сумма равна –p, а произведение равно q, то эти числа являются корнями уравнения Доказательство. По условию m+n=-p,а mn=q. Значит, уравнение можно записать в виде Подставив вместо x число m, получим: Значит, число m является корнем уравнения. Аналогично можно показать, что число n так же является корнем уравнения: По праву в стихах быть воспета О свойствах корней теорема Виета. Что лучше, скажи, постоянства такого: Умножишь ты корни и дробь уж готова: В числителе С, в знаменателе А, А сумма корней тоже дроби равна Хоть с минусом дробь эта, что за беда- В числителе b, в знаменателе a.

Решение кв. уравнений с помощью графиков. Главное меню Главное меню Не используя формул квадратное уравнение можно решить графическим способом. Например Решим уравнение Для этого построим два графика(рис.1): X Y )y=x2 2)y=x+1 1)y=x 2, квадратичная функция, график парабола. D(f): 2)y=x+1, линейная функция, график прямая. D(f): X01 Y012 Рисунок 1 Ответ: Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет.

Разложение кв. трехчлена на множители Главное меню Главное меню Многочлен вида ax2+bx+c, где a,b,c - некоторые числа, x переменная, называется квадратным трёхчленом. Пример 3x2+7x+9 Квадратный трехчлен разлагается на множители, где и корни трехчлена. Дано: - квадратный трехчлен; и -корни его Доказать: Доказательство: по теореме Виета следует,

Применение кв. уравнений Главное менюГлавное меню Решение квадратных уравнений широко применяется в других разделах математики: в разложении квадратного трехчлена, в исследовании квадратичной функции, в решении уравнений высших степеней, в решении текстовых задач и задач по геометрии. Некоторые уравнения высших степеней можно решить, сведя их к квадратному. 1) Иногда левую часть уравнения легко разложить на множители, из которых каждый - многочлен не выше 2-ой степени. Тогда приравнивая каждый многочлен к нулю, решаем полученные уравнения. ПРИМЕР: 2) Если уравнение имеет вид ax2n+bxn+c= 0, его можно свести к квадратному, введя новую переменную t = x. ПРИМЕР: 3) В геометрии: Гипотенуза прямоугольного треугольника равна 10. Найти катеты, если один из них на 2 см. больше другого. РЕШЕНИЕ: по теореме Пифагора a2+ b2= c2 Пусть х см.-1 катет, тогда (х+2) см.-2 катет. Составим уравнение: x2+ (x+2)2= 102 Пифагор