Повторение главы «Треугольники» МОУ Халдинская средняя общеобразовательная школа Селтинского района Удмуртской Республики Учитель:Эсенбаева Ольга Александровна
Краткое повторение теоретических сведений В этой презентации рассмотрены основные определения и теоремы из главы. Эти сведения помогут вам подготовиться к зачетному уроку. Презентацию вы можете просмотреть только один раз. Желаем удачи!
Треугольник – это геометрическая фигура, состоящая из трёх точек плоскости, не лежащих на одной прямой и трёх отрезков попарно соединяющих эти точки
Виды треугольников равнобедренный, если две его стороны равны равносторонний, если все его стороны равны
Перпендикуляр к прямой А Н а Отрезок АН называется перпендикуляром, проведённым из точки А к прямой а, если прямые АН и а перпендикулярны Теорема. Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один. А ВН А1А1 С М
Медиана треугольника Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника А В С1С1 В1В1 С А1А1
Биссектриса треугольника Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. А В1В1 С А1А1 В С1С1
Высота треугольника Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. А Н С В
Свойства равнобедренного треугольника Теорема. В равнобедренном треугольнике углы при основании равны Теорема. В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой. С В А Н С В А
Первый признак равенства треугольников Теорема. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны А В С А1А1 С1С1 В1В1
Второй признак равенства треугольников Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. А А1А1 В1В1 С1С1 С В
Третий признак равенства треугольников Теорема. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. А С В А1А1 С1С1 В1В1