0,5ab (b-a) 2 0,5ab Иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь.

Презентация:



Advertisements
Похожие презентации
«Знаменитая теорема Пифагора» Авторы: Рожкова О., Лактионова С.
Advertisements

Учебный проект по математике «Теорема Пифагора и различные способы ее доказательства» Выполнили учащиеся 8 информационно-математического класса Учитель.
Выполнила : ученица 8 информационно - математического класса Латыпова Кристина Учитель : Алтухова Ю. В. Брянский городской лицей 1 имени А.С.Пушкина Проект.
Теорема Пифагора Квадрат гипотенузы равен сумме квадратов катетов.
8 класс. Учитель: Мельник Л.Г. Теорема Пифагора. Теорема Пифагора – одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит.
C a b Доказательство теоремы Пифагора Площадь этого квадрата = C 2.
Теорема Пифагора Квадрат гипотенузы равен сумме квадратов катетов.
с с b b b b а а а а Дано: Прямоугольный треугольник а и b – катеты с – гипотенуза Доказать: с 2 =а 2 +b 2 Доказательство: 1.Достроим треугольник до квадрата.
Теорема Пифагора и способы её доказательства. Геометрия 8 класс Выполнила учитель математики МОУ «Средняя общеобразовательная школа 28» Маркова Ольга Геннадьевна.
П И Ф А Г О Р Древнегреческий философ и математик, просла­вившийся своим учением о космической гармонии и переселении душ. Предание приписывает Пифагору.
Подготовил презентацию ученик 8 информационо-математического класса Варсеев Дмитрий Теорема Пифагора на шахматной доске.
Пифагор и теорема Пифагора. Пифагор Самосский Родился: около 569 года до н.э. на о. Самос в Ионическом море Умер: около 475 года до н.э.
Какой треугольник называется прямоугольным? Как называются его стороны? Катеты и гипотенуза.
Кураева Маргарита 8А класс. с с b b b b а а а а Дано: Прямоугольный треугольник а и b – катеты с – гипотенуза Доказать: с 2 =а 2 +b 2 Доказательство:
Теорема Пифагора Составила Гладкова Людмила Владимировна, учитель математики.
Теорема Пифагора. Формулировки теоремы Геометрическая Геометрическая Геометрическая Алгебраическая Алгебраическая Алгебраическая.
Самые интересные доказательства теоремы Пифагора
Теорема Пифагора И способы ее доказательства Магнитогорск 2011.
Открытый банк заданий по математике. Аннотация. На клетчатой бумаге с клетками размером 1 см 1 см изображены различные фигуры. Необходимо найти площадь.
Теорема Пифагора Подготовила Сивкова С.Н. СОШ 1, 8 класс.
Транксрипт:

0,5ab (b-a) 2 0,5ab Иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.

Здесь изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2. Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.