Размещения Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей.

Презентация:



Advertisements
Похожие презентации
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Advertisements

Элементы статистики и вероятность. Алгебра. 7-9 класс. Автор: Рыженко Е.В. МОУ « СОШ 64» г. Астрахань.
Сочетания Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч. Сколько существует различных вариантов посещения футбольного.
Перестановки. Задача 1. Антону, Борису и Виктору повезло, и они купили 3 билета на футбол на 1,2 и 3-е места первого ряда стадиона. Сколькими способами.
Автор: Щукина Т.И., г. Кудымкар, Пермский край 4.
Комбинаторные задачи Демонстрационный материал 5 класс Все права защищены. Copyright(c) Copyright(c)
Введение в комбинаторику Введение в комбинаторику Комбинаторика является древнейшей и, возможно, ключевой ветвью математики.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Средняя школа 46 ШЕСТЬ УРОКОВ ПО КОМБИНАТОРИКЕ В 7-м КЛАССЕ Белгород 2005 Тарасова А.М.
LOGO Элементы комбинаторики..
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 1 города Суздаля» Факультативное занятие в 6 классе по теме: Учитель математики:
Урок 2 « Формулы для подсчёта количества перестановок, сочетаний, размещений»
Размещение Пусть имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c и d. Каждую упорядоченную тройку, которую можно составить из четырех.
Комбинаторика Лейбниц, 1666 год «Рассуждения о комбинаторном искусстве»
Различные комбинации из трех элементов. А-7. Три друга, Антон, Борис и Виктор, приобрели два билета на футбольный матч. Сколько существует различных вариантов.
ТЕМА УРОКА: «ЭЛЕМЕНТЫ КОМБИНАТОРИКИ» (ПРАКТИКУМ) Цели: Повторить основные понятия комбинаторикиосновные понятия Сформировать умения решать различные виды.
Существуют два типа задач, связанных с размещениями: 1) из п элементов составить все возможные размещения по р в каждом; 2) определить сколько различных.
На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром. Из скольких вариантов завтрака Вова может.
Комбинаторика - раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Голодникова Алевтина Александровна – преподаватель математики ГБ ПОУ «Экономический колледж» г.Санкт-Петербурга.
Транксрипт:

Размещения

Задача 1. Три друга – Антон, Борис и Виктор – приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько у друзей есть вариантов (способов) занять эти два места на стадионе?

Решение. Составим таблицу всех возможных вариантов рассаживания двух мальчиков из трёх на два места. 1 место2 место АБ БА АВ ВА БВ ВБ Ответ. 6 способов.

Определение. Комбинации из n элементов по k, отличающиеся друг от друга либо составом элементов, либо порядком их расположения, называются размещениями из n элементов по k. (А из эн по ка) А n k =k n АnkАnk

Задача 2. Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета?

Решение. Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо предметами, либо порядком следования предметов. Значит, речь идёт о размещениях из 8 предметов по 4. А 8 4 = = = = 1680 Ответ способами.

Задача 3. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. А 30 2 = == = 870 Ответ. 870 способами.

Задача 4. Сколькими способами можно изготовить трехцветный флаг с горизонтальными полосами, если имеется материал 7 различных цветов?

Решение. А 7 3 = = = = 210 Ответ. 210 способами.

Задача 5. На странице альбома 6 свободных мест для фотографий. Сколькими способами можно вложить в свободные места: а) 2 фотографии; б) 4 фотографии; в) 6 фотографий?

Решение. а) А 6 2 = = = 5 6 = 30 б) А 6 4 = = = = 360 в) А 6 6 = = = = = 720 Ответ. а) 30способами; б) 360 способами; в) 720 способами.

Домашнее задание. 1.Сколькими способами может разместиться семья из трех человек в четырехместном купе? 2.Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой стоит 20 одноместных столов? 3.На плоскости отметили 5 точек. Их надо обозначить латинскими буквами. Сколькими способами это можно сделать ( в латинском алфавите 26 букв).