Объём многогранника. Многогранник Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Презентация:



Advertisements
Похожие презентации
Многогранники. Многогранником называется ограниченное тело, поверхность которого состоит из конечного числа многоугольников.
Advertisements

Понятие объема. Равновеликие тела. Объем параллелепипеда. Объем призмы. ГБОУ СОШ с углубленным изучением английского языка 1353 Учитель математики Сазыкина.
Задание В 9 содержит задачи на нахождение объемов и площадей поверхностей пространственных фигур. Оно проверяет развитие пространственных представлений.
Презентация по геометрии Тема: «Объем прямоугольной призмы и пирамиды» Выполнила: ученица 11 «Б» класса Ступина Мария 2008 год.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
Содержание 1 История развития геометрии пирамиды 2 Элементы пирамиды 3 Развёртка пирамиды 4 Свойства пирамиды 5 Теоремы, связывающие пирамиду с другими.
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
В-9 Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 5,5.Найти объем параллелепипеда. объем параллелепипеда.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Пирамида.
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
1. Диагональ куба равна. Найдите его объем. Ответ. 8. Решение. Если ребро куба равно a, то его диагональ равна. Отсюда следует, что если диагональ куба.
Определения Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Сфера-это фигура, состоящая из всех.
Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник- это тело, поверхность которого состоит.
Бурак Анастасия 10»В». Правильный многогранник или платоново тело это выпуклый многогранник с равными гранями, которые составляют правильные многоугольники.
Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.
Геометрия 11 класс. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Точка О называется.
От Рыбакова Дмитрия. Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды, точки, не лежащей в плоскости.
11 класс геометрия. Конус можно описать около пирамиды, если ее основание – многоугольник, вписанный в окружность, а вершина пирамиды проецируется в центр.
Выполнила :Фокина о 11ж класс ВСОШ 7 Руководитель: Бессонова Т.Д. г. Мурманск 2008.
Транксрипт:

Объём многогранника

Многогранник Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Многогранник называется выпуклым, если он лежит по одну сторону от любой плоскости, содержащей его грань. Многогранник называется невыпуклым, если существует такая грань, что многогранник оказывается по обе стороны от плоскости, содержащей эту грань.

Что такое в житейском смысле объем тела, в частности многогранника? Это то, сколько жидкости может быть налито внутрь этого многогранника. Отрежем вершинки и нальем внутрь каждого многогранника воду. Выпуклый многогранник уже наполнился, а невыпуклый еще нет. Но возможно вода наливалась с разной скоростью: чтобы правильно сравнить объемы, выльем жидкость из каждого многогранника в одинаковые стаканы. Уровень воды в правом стакане выше, чем в левом, значит объем невыпуклого многогранника действительно больше объема выпуклого.

Многие значительные достижения математиков Древней Греции в решении задач на нахождение кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предположенным Евдоксом Книдским (около до нашей эры). Известна формула, которая дает возможность найти объем многогранника, если известны лишь длины его ребер. Объем произвольного многогранника можно вычислить, зная лишь длины его ребер. Однако многогранник должен быть специального вида.

В общем случае можно показать, что обобщённые объёмы многогранников корни полиномиальных уравнений с коэффициентами, которые не зависят от расположения вершин многогранника в пространстве, а представляют собой многочлены от квадратов длин его рёбер. Числовые коэффициенты этих многочленов определяются комбинаторным строением многогранника.

Объем пирамиды Теорема. Объем пирамиды равен одной трети произведения площади основания на высоту.

Объем многогранника Объем многогранника равен сумме объемов пирамид, имеющих своими основаниями грани многогранника, а вершиной – центр сферы. Так как все пирамиды имеют одну и ту же высоту, равную радиусу R сферы, то объем многогранника:

Объем многогранника больше объема шара, ограниченного сферой, но меньше объема шара с тем же центром и с радиусом R+ε. Таким образом,

Площадь поверхности описанного многогранника при неограниченном уменьшении размеров его граней, т.е. при неограниченном уменьшении ε, стремится к 4πR^2 и поэтому эта величина принимается за площадь сферы.