Построение сечений многогранников. А ВС D A1 B1 C1 D1 Дан куб A B C D A1 B1 C1 D1.

Презентация:



Advertisements
Похожие презентации
Построение сечений многогранников. А В а А В С Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости. Через прямую и не.
Advertisements

Построение сечений многогранников. Содержанием работы является построение сечений куба, пирамиды и призмы по точкам, заданным на рёбрах многогранников.
Построение сечений тетраэдра и параллелепипеда. А В а А В С Аксиомы стереометрии.
Построение сечений Многогранников. Многогранники вокруг нас.
Сечения куба и тетраэдра. Найдите: а) точки пересечения прямой EF с плоскостями АВС и А 1 В 1 С 1 б) линию пересечения плоскостей ADF и EFD в) линию пересечения.
10 класс 1.Через три точки можно провести плоскость и притом только одну. 2.Нужно найти прямые, по которым плоскость сечения пересекается с плоскостями.
Построение сечений параллелепипеда. При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. Для.
Если многогранник лежит по одну сторону от данной плоскости, то он может: а) не иметь с плоскостью ни одной общей точки; б) иметь одну общую точку – вершину.
Методы построения сечений Метод следов Метод внутреннего проектирования Комбинированный метод Учитель: Сергеева Елена Александровна МОУ СОШ 26 г.Мурманск.
Сечения тетраэдра и параллелепипеда Многоугольник, сторонами которого являются отрезки по которым секущая плоскость пересекает грани многогранника, назавается.
Построение сечений многогранников (Метод следов).
формирование и развитие пространственных представлений; выработка навыков решения задач на построение сечений простейших многогранников; воспитание эстетического.
Если многогранник лежит по одну сторону от данной плоскости, то он может: а) не иметь с плоскостью ни одной общей точки; б) иметь одну общую точку – вершину.
Если многогранник лежит по одну сторону от данной плоскости, то он может: а) не иметь с плоскостью ни одной общей точки; б) иметь одну общую точку – вершину.
Метод следов. След- линия пересечения секущей плоскости с каждой гранью многоугольника. След секущей плоскости будем находить на нижнем основании.
Основное понятие геометрии – место пересечения прямой и плоскости, не имеющее измерения. (точка) Геометрическая фигура, состоящая из шести квадратных граней.
ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА И ПАРАЛЛЕЛЕПИПЕДА. Определения Секущая плоскость тетраэдра (параллелепипеда) - любая плоскость, по обе стороны от которой.
Сечения куба. Построение сечений в многогранниках. DlDl A B C D AlAl BlBl ClCl ТЕМА:
Построение сечений многогранников геометрия 10 класс Выполнил: Старёв А. Е. МОУ «Судская средняя общеобразовательная школа 2» Череповецкого района.
Для самостоятельного изучения. Существование плоскости С1. Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие.
Транксрипт:

Построение сечений многогранников

А ВС D A1 B1 C1 D1 Дан куб A B C D A1 B1 C1 D1

На гранях куба заданы точки R, P, Q. Требуется построить сечение куба плоскостью, проходящей через заданные точки. А В С D A1 B1 C1 D1 R P Q

Точки Р и Q заданы, как принадлежащие плоскости сечения. В то же время эти точки принадлежат плоскости грани C D D1 C1, следовательно линия PQ является линий пересечения этих плоскостей А В С D A1 B1 C1 D1 R P Q

Линии PQ и C1D1 лежат в плоскости грани C C1 D1 D. Найдем точку Е пересечения линий PQ и C1 D1. А В С D A1 B1 C1 D1 R P Q E

Точки R и E принадлежат плоскости сечения и плоскости основания куба, следовательно линия RE, соединяющая эти точки будет линией пересечения плоскости сечения и плоскости основания куба. А В С D A1 B1 C1 D1 R P Q E

RE пересекает A1 D1 в точке F и линия RF будет линией пересечения плоскости сечения и плоскости грани A1 B1 C1 D1. А В С D A1 B1 C1 D1 R P Q E F

Точки и Q, и F принадлежат плоскости сечения и плоскости грани A A1 D1 D, следовательно линия QF будет линией пересечения этих плоскостей. А В С D A1 B1 C1 D1 R P Q E F

Линии RE и B1C1, лежащие в плоскости основания куба пересекаются в точке G. А В С D A1 B1 C1 D1 R P Q E F G

Точки P и G принадлежат плоскости сечения и плоскости грани B B1 C1 C, следовательно линия PG является линией пересечения этих плоскостей А В С D A1 B1 C1 D1 R P Q E F G

PG пересекает B B1 в точке H и линия PH будет линией пересечения плоскости сечения и плоскости грани B B1 C1 C. А В С D A1 B1 C1 D1 R P Q E F G H

Точки R и H принадлежат плоскости сечения и плоскости грани A A1 B1 B и следовательно линия RH будет линией пересечения этих плоскостей. А В С D A1 B1 C1 D1 R P Q E F G H

А пятиугольник RHPQF будет искомым сечением куба плоскостью, проходящей через точки R, P, Q. А В С D A1 B1 C1 D1 R P Q E F G H

А пятиугольник RHPQF будет искомым сечением куба плоскостью, проходящей через точки R, P, Q. А В С D A1 B1 C1 D1 R P Q F H

Дана трёхгранная призма A B C A1 B1 C1. Требуется построить сечение призмы плоскостью, проходящей через три заданные точки D, E, и F. A B C A1 B1 C1 D E F

Точки D и E принадлежат плоскости грани А А1 С1 С и плоскости сечения, следовательно линия DE будет линией пересечения этих плоскостей. A B C A1 B1 C1 D E F

Точки E и F принадлежат плоскости грани B C C1 B1 и плоскости сечения, следовательно линия EF будет линией пересечения этих плоскостей. A B C A1 B1 C1 D E F

Линии DE и A A1 лежат в плоскости грани A A1 C1 C. Найдём точку G, пересечения этих линий. A B C A1 B1 C1 D E F G

Точка G принадлежит плоскости сечения, так как она принадлежит линии DE. Точки G и F принадлежат плоскости грани A A1 B1 B и плоскости сечения, следовательно линия GF будет линией пересечения этих плоскостей. A B C A1 B1 C1 D E F G

В плоскости грани A A1 B1 B линии GF и A1 B1 пересекаются в точке L. Точки F и L принадлежат плоскости грани A A1 B1 B и плоскости сечения, следовательно линия FL будет линией пересечения этих плоскостей. A B C A1 B1 C1 D E F G L

Точки D и L принадлежат плоскости основания призмы A1 B1 C1 и плоскости сечения, следовательно линия DL будет линией пересечения этих плоскостей. A B C A1 B1 C1 D E F G L

А четырёхугольник DEFL будет искомым сечением трёхгранной призмы плоскостью, проходящеё через три заданные точки D,E,F. A B C A1 B1 C1 D E F L