« Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
S1S1 S2S2 S3S3 S=S 1 +S 2 +S 3 Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников
ABC= MNK, Равные многоугольники имеют равные площади. значит S ABC =S MNK А В С M N K
Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?
Практическая работа abca2a2 b2b2 c2c
Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов a b c
«Умение решать задачи – такое же практическое искусство. Ему можно научиться только путем подражания или упражнения» (Д. Пойа)
1. Найдите гипотенузу с прямоугольного треугольника по данным катетам: a= 6 см, b=8 см. a b c - ?
2. В прямоугольном треугольнике известен катет a=9 см и гипотенуза c=41 см, найдите второй катет. a cb-?
Выяснить, что нужно найти, и что нам для этого дано; Применить нужную формулу; Рассмотреть прямоугольный треугольник; АЛГОРИТМ
Соотнесите треугольник, и верную запись теоремы Пифагора a a a b b b c c c a 2 =b 2 +c 2 b 2 =a 2 +c 2 c 2 =a 2 +b 2
3. В прямоугольной трапеции большая диагональ равна 25 см, большее основание 24 см, меньшее основание 16 см. Найти площадь трапеции. А В С D
4. Диагональ DB прямоугольника ABCD равна 61 см, а сторонa BC равна 11 см. Найти периметр прямоугольника. АВ С D
5. Диагонали ромба равны 6 см и 8 см. Найти длину стороны ромба. А В С D
«Правило верёвки»
Над озером тихим, С полфута размером, высился лотоса цвет. Он рос одиноко. И ветер порывом Отнес его в сторону. Нет Боле цветка над водой. Нашел же рыбак его ранней весной В двух футах от места, где рос. Итак, предложу я вопрос: Как озера вода здесь глубока? Задача древних индусов
фута 2 фута х футов х + фута А В С D
Домашнее задание: Выучить формулировку и доказательство теоремы Пифагора (Глава 6 параграф 3) (можно предложить другое, отличное от разобранного нами); Решить задачу, которую мы сформулировали в начале урока, хватит ли нам верёвки для закрепления мачты; Довести до ответа задачу древних индусов; Необязательное задание: Задача из китайской «Математики в девяти книгах»; Задача из учебника «Арифметика» Леонтия Магницкого.
Пребудет вечной истина, как скоро Ее познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век.