Презентация темы «Решение задач с параметрами» Занятие 3.

Презентация:



Advertisements
Похожие презентации
Задачи с параметрами.
Advertisements

«Решение задач с параметрами.» Презентация к эллективным занятиям в 11 классе.
П резентация темы «решение задач с параметрами в итоговом повторении курса алгебры.» Разработано учителем математики гимназии 22 Захарьян А. А.
Разработка заданий и методических рекомендаций для решения задач с параметрами при подготовке к ЕГЭ по математике. Выполнена учителем математики Новосадовой.
Решение заданий С 5. 1) Найти все значения параметра а, при каждом из которых среди значений функции есть ровно одно целое число. Решение: 1) Рассмотрим.
Подготовка к ЕГЭ. Область определения и множество значений функции. 11 класс.
Использование ограниченности функций. Пусть множество М - есть общая часть (пересечение) областей существования функций и и пусть для любого справедливы.
ВЫПОЛНИЛА УЧИТЕЛЬ ЛИЦЕЯ 180 КАЛИНИНА Е.А. Решение задач с параметром.
C1 метод мажорант. Применим для задач в которых множества значений левой и правой частей уравнения или неравенства имеют единственную общую точку, являющуюся.
Использование неотрицательности функций. Пусть левая часть уравнения F(x ) = 0 (1) есть сумма нескольких функций F(x) = f 1 (x) + f 2 (x) +…+ f n (x) (2),
ЕГЭ по математике 2008 г. Примеры заданий. неотрицательность правой части Иррациональные уравнения.
Задачи части «С» Задачи части «С» по материалам диагностической по материалам диагностической работы ЕГЭ (17 февраля 2010) работы ЕГЭ (17 февраля 2010)
Тригонометрические уравнения в задачах с параметрами.
Непрерывность функции Метод интервалов. Функция y= f (x) непрерывна на интервале Х, если она непрерывна во всех точках интервала Х Функция у = f (x) непрерывна.
Решение квадратных уравнений Рассмотрим квадратное уравнение (1) Дискриминант корни (в случае )
Нестандартные приемы решения нестандартных уравнений и неравенств Разработала учитель математики МБОУ «СОШ 38» г.Чебоксары Карасёва Вера Васильевна.
Издательство «Легион» Задания ЕГЭ по алгебре С3, С5 докладчик: Кулабухов Сергей Юрьевич.
Основные типы задач на расположение корней квадратичной функции, зависящей от параметра.
РЕШЕНИЕ ЛИНЕЙНЫХ И КВАДРАТНЫХ УРАВНЕНИЙ С ПАРАМЕТРОМ.
Решение задач с параметром на плоскости ХОА Уравнения и неравенства с двумя переменными. Алгоритм и примеры решения задач в плоскости ХОА.
Транксрипт:

Презентация темы «Решение задач с параметрами» Занятие 3

Теперь можно приступать к решению задач ЕГЭ с параметрами.

Пример 1. Найти все значения параметра p, при которых уравнение имеет хотя бы один корень. Решение: Рассмотрим функцию f(a)= определённую на [-1;0)U(0;1] и найдём её область значений. f(-1)=11; f(1)=3; при f (a)=

f (a)=0 Т.к. то экстремумов у функции нет, следовательно E(f)=(0;11]. Чтобы уравнение а значит и данное уравнение имело хотя бы один корень, необходимо и достаточно, чтобы Ответ:

Пример 2. Найти все значения а, при которых область определения функции содержит ровно одно двузначное натуральное число. Решение: D(y): Решим первое неравенство системы:

1) если 0

2) если а>1, то Чтобы решение удовлетворяло условию задачи, необходимо и достаточно, чтобы Ответ:

Пример 3. Найти все значения параметра а, при каждом из которых множество решений неравенства содержит какой-нибудь отрезок длиной 2,но не содержит никакого отрезка длиной 3 Решение:

Решим неравенство методом интервалов, рассмотрев функцию непрерывную на R\{0}, имеющую нули 4, а: 1) если - решение содержит отрезок длиной 3, что не удовлетворяет условию задачи. 2) если 0

т.е. 3) если - аналогично случаю 1) Ответ:

Пример 4. Найти все значения параметра p, при которых уравнение имеет хотя бы один корень, и число различных корней этого уравнения равно числу различных корней уравнения Решение: 1) Пусть =t, тогда

Рассмотрим функцию D(f)=[0; ), f(t)=0 t=0. E(f)=(- ;0] f(t)= f(t)

2) Узнаем при каких p уравнение имеет ровно один корень: а) если 2p+3=0 ( ), то -удовлетворяет условию. б) если то уравнение имеет единственный корень при D=0. D=0 Итак, уравнение имеет ровно один корень при

Но уравнению удовлетворяют только т.е. при и p=-1 уравнения и имеют равное число корней, а именно, по одному. Ответ: ; -1