Двоичное кодирование звуковой информации Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.

Презентация:



Advertisements
Похожие презентации
Двоичное кодирование звуковой информации Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой.
Advertisements

Кодирование звуковой информации. Схема кодирования звука звуковая волна микрофон переменный ток звуковая плата двоичный код память ЭВМ к о д и р о в а.
ЕГЭ Урок 6 Кодирование звуковой информации. Двоичное кодирование звуковой информации в компьютере Звук представляет собой распространяющуюся в воздухе,
В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие.
Кодирование и обработка звуковой информации.. Звук - это волна с непрерывно меняющейся амплитудой и частотой Интенсивность громкость Частота высота тона.
Звук представляет coбой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше.
Кодирование звуковой информации Мясникова О.К.. Временная дискретизация звука Звук – звуковая волна с непрерывно меняющейся амплитудой и частотой. Чем.
Тема урока: «Кодирование звуковой информации» Кодирование звуковой информации.htm.
Кодирование и обработка звуковой информации 9 класс. Учитель: Бычкова О.В.
План-конспект урока по информатике и икт (9 класс) по теме: Кодирование и обработка звуковой информации. Создание звукового клипа
Кодирование и обработка звуковой информации. Звук – это волна с непрерывно меняющейся амплитудой и частотой.
«Кодирование и обработка звуковой информации». Звуковая информация Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну (колебания.
Закрепить раннее полученные знания Закрепить раннее полученные знания Изучить способ кодирования звуковой информации с помощью компьютера Изучить способ.
Кодирование звуковой информации Аналоговая информация Графики непрерывных функций; Графики непрерывных функций; проигрыватель грампластинок.
Работу выполняла: Ученица 9 А класса Макеева Вероника.
Кодирование и обработка звуковой информации. Звуковая информация. Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с.
Тема урока: Двоичное кодирование звуковой информации.
Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну (колебания воздуха или другой среды) с непрерывно меняющейся амплитудой.
Способы представления изображения и звука Двоичное кодирование графической и звуковой информации.
Кодирование звуковой информации Цель: познакомиться с принципом кодирования звуковой информации.
Транксрипт:

Двоичное кодирование звуковой информации Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного (аналогового) звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки. Для каждого участка устанавливается определенная величина амплитуды. Непрерывная зависимость амплитуды сигнала от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек»

Каждой «ступеньке» присваивается значение уровня громкости звука, его код (1, 2, 3 и так далее). Уровни громкости звука - набор возможных состояний. Чем большее количество уровней громкости будет выделено в процессе кодирования, тем большее количество информации несет значение каждого уровня и тем более качественным будет звучание. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 I = 2 16 = 65536, где I глубина звука. Таким образом, современные звуковые карты могут обеспечить кодирование уровней сигнала.

Частота дискретизации При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Количество измерений в секунду может лежать в диапазоне от 8000 до , то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции. При частоте 48 кГц качеству звучания аудио- CD. Также возможны моно- (1 канал), и стерео- (2 канала) режимы.

Импульсно-кодовая модуляция (англ. Pulse Code Modulation, PCM) заключается в том, что звуковая информация хранится в виде значений амплитуды, взятых в определенные моменты времени (т. е. измерения проводятся «импульсами»). При записи звука в компьютер амплитуда измеряется через равные интервалы времени с некоторой достаточно большой частотой. При воспроизведении звука компьютер использует сохраненные значения для того, чтобы восстановить непрерывную форму выходного сигнала. Исходный сигнал Хранимая информация Воспроизводимый сигнал

Процесс получения цифровой формы звука называют оцифровкой. Устройство, выполняющее оцифровку звука, называется аналого-цифровым преобразователем (АЦП). Устройство, выполняющее обратное преобразование, из цифровой формы в аналоговую, называется цифро- аналоговым преобразователем (ЦАП). В современных компьютерах основная обработка звука выполняется звуковыми картами. Помимо АЦП и ЦАП звуковые карты содержат сигнальный процессор специализированный микрокомпьютер для обработки оцифрованного звука, выполняющий значительную часть рутинных расчетов при обработке звуков (смешение звуков, наложение спецэффектов, расчет формы выходного сигнала и т. п.; центральный процессор не тратит время на выполнение этих работ).

Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц). Для этого количество битов, приходящихся на одну выборку, необходимо умножить на количество выборок в 1 секунду и умножить на 2 (стерео – два канала): 16 бит = бит = = байт = 187,5 Кбайт.

З А Д А Ч И 1. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин, если «глубина» кодирования и частота дискретизации звукового сигнала равны соответственно: а) 16 бит и 8 кГц; б) 16 бит и 24 кГц. 2. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD), если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен: а) 940 Кбайт; б) 157 Кбайт.

3. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен: а) 700 Кбайт; б) 6300 Кбайт. 4. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука?