Поляризация света 11 класс. Автор: учитель Васильева Е.Д.
В начале XIX века, когда Т.Юнг и О. Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде – эфире. В начале XIX века, когда Т.Юнг и О. Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде – эфире.
Томас Юнг - (1773–1829), английский физик. С ранних лет обнаружил необыкновенные способности и феноменальную память. Уже в два года бегло читал, в четыре знал на память сочинения английских поэтов, к 14 годам познакомился с дифференциальным исчислением (по Ньютону), изучил латынь, древнегреческий, древнееврейский, итальянский и французский языки. (1773–1829), английский физик. С ранних лет обнаружил необыкновенные способности и феноменальную память. Уже в два года бегло читал, в четыре знал на память сочинения английских поэтов, к 14 годам познакомился с дифференциальным исчислением (по Ньютону), изучил латынь, древнегреческий, древнееврейский, итальянский и французский языки.
При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде). При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде).
Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления. Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления. Прохождение света через кристалл исландского шпата (двойное лучепреломление). Если кристалл поворачивать относительно направления первоначального луча, что поворачиваются оба луча, прошедшие через кристалл.
В 1809 году французский инженер Э. Малюс пропускал свет последовательно через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки могли поворачиваться друг относительно друга на угол φ В 1809 году французский инженер Э. Малюс пропускал свет последовательно через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки могли поворачиваться друг относительно друга на угол φ
Опыт с турмалином: Почему происходило гашение света? Почему происходило гашение света? если свет – продольная волна, то она симметрична по всем направлениям. если свет – продольная волна, то она симметрична по всем направлениям.
Ни двойное лучепреломление, ни опыт с турмалином не могут найти объяснение в рамках теории продольных волн. Ни двойное лучепреломление, ни опыт с турмалином не могут найти объяснение в рамках теории продольных волн. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны.
Поперечная волна в резиновом жгуте Частицы колеблются вдоль оси y. Поворот щели S вызовет затухание волны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны.
Таким образом, асимметрия относительно луча является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). Таким образом, асимметрия относительно луча является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал Т. Юнг (1816 г.). В середине 60-х годов XIX века Максвелл сделал вывод о том, что свет – это электромагнитные волны. Этот вывод был сделан на основе совпадения известного значения скорости света со скоростью распространения предсказанных Максвеллом электромагнитных волн. В середине 60-х годов XIX века Максвелл сделал вывод о том, что свет – это электромагнитные волны. Этот вывод был сделан на основе совпадения известного значения скорости света со скоростью распространения предсказанных Максвеллом электромагнитных волн. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света. К тому времени, когда Максвелл сделал вывод о существовании электромагнитных волн, поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.
Пластинка турмалина может быть использована как для получения поляризованного света, так и для анализа характера поляризации света (поляризатор и анализатор). Пластинка турмалина может быть использована как для получения поляризованного света, так и для анализа характера поляризации света (поляризатор и анализатор). В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами. В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами. Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами. Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами.