Оглавление Квадратное уравнение и его корни. Неполные квадратные уравнения. Приведенное квадратное уравнение. Теорема Виета. Уравнения, сводящиеся к квадратным.

Презентация:



Advertisements
Похожие презентации
Теорема Виета. Пусть х 1 и х 2 – корни уравнения х 2 +pх+q=0. Тогда числа х 1, х 2, p, q связаны равенствами: х 1 +х 2 = -p, х 1 х 2 =q.
Advertisements

Теорема Виета.
«Человек не знающий математики, не способен ни к каким другим наукам. Более того, он даже не способен оценить уровень своего невежества» Роджер Бэкон.
Теорема Виета МОУОО «Селезнёвская средняя общеобразовательная школа» Шелаболихинского района Алтайского края Урок алгебры в 8 классе Учитель: Захарова.
Франсуа Виет Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене- ле-Конт. Отец Виета был прокурором. Сын выбрал профессию.
GE131_350A
Сатиев Ахмед Ученик 8 « г » класса Школы 36. Квадратным уравнением называется уравнение вида ах 2 + bx + c = 0, где а, b, с – числа, а 0, х – неизвестное.
С в о й с т в а к о р н е й к в а д р а т н о г о у р а в н е н и я.
Квадратные уравнения Определение. Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Решение кв. уравнений с.
Домашнее задание. Вариант х^2 – 16x = 0, (x2 ; x1 ); 2. 5x^2 – 50x = 0, (x2 ; x1 ); 3. x^2 – 4x – 32 = 0, (x2 ; x1 ); 4. x^2 + 12x + 32 = 0, (x1.
Теорема Виета. Автор: учитель математики Петрова С.В.
Работу выполнили ученицы 9 Класса: Тетерюк Анастасия, Жумагулова Назира. Проверила: Бакаева Жупар Аринжановна.
1.И з у ч и т ь т е м у « К в а д р а т н ы е у р а в н е н и я ». 2.И с с л е д о в а т ь з а в и с и м о с т ь м е ж д у к о э ф ф и ц и е н т а м и.
Квадратные уравнения. Квадратное уравнение Квадратным уравнением называется уравнение вида ах 2 + bx + c = 0, где а, b, с – числа, а 0, х – неизвестное.
Содержание Определение квадратного уравнения; Решение неполных квадратных уравнений; Решение уравнений, сводящихся к неполным квадратным уравнениям; Тест.
Теорема Виета. ФРАНСУА ВИЕТ (Вьета) Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591.
Квадратные уравнения Чтобы решить уравнение, Корни его отыскать, Нужно немного терпения, Ручку, перо и тетрадь. Минус напишем сначала, Рядом с ним пополам,
Урок алгебры в 8 классе. Цели урока: - повторить виды квадратных уравнений и формулы корней квадратного уравнения; - «открыть» зависимость между корнями.
Тема урока: «Приведённое квадратное уравнение. Теорема Виета.» Учитель математики ГОУ СОШ 250: Самсонова Мария Николаевна Размещено на.
«Приведенное квадратное уравнение. Теорема Виета».
Транксрипт:

Оглавление Квадратное уравнение и его корни. Неполные квадратные уравнения. Приведенное квадратное уравнение. Теорема Виета. Уравнения, сводящиеся к квадратным. Решение задач с помощью квадратных уравнений. Задания для самостоятельной работы.

Квадратным уравнением называется уравнение ax²+bx+c=0, где a, b, c – заданные числа, a0, x -неизвестное. Коэффициенты a, b, c квадратного уравнения обычно называют так: a – первым или старшим коэффициентом, b – вторым коэффициентом, c – свободным членом. Например, в уравнении 3х²-х+2=0 старший (первый) коэффициент а=3, второй коэффициент b=-1, а свободный член c=2. Решение многих задач математики, физики, техники сводится к решению квадратных уравнений: 2x²+x-1=0, x²-25=0, 4x²=0, 5t²-10t+3=0. При решении многих задач получаются уравнения, которые с помощью алгебраических преобразований сводятся к квадратным. Например, уравнение 2x²+3x=x²+2x+2 после перенесения всех его членов в левую часть и приведения подобных членов сводится к квадратному уравнению x²+x-2=0.

Рассмотрим уравнение общего вида: ax²+bx+c=0, где a0. Корни уравнения находят по формуле: Выражение называют дискриминантом квадратного уравнения. Если D 0, то уравнение имеет два действительных корня. В случае, когда D=0, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Неполные квадратные уравнения. Если в квадратном уравнении ax²+bx+c=0 второй коэффициент b или свободный член c равны нулю, то квадратное уравнение называется неполным. Неполное квадратное уравнение может иметь один из следующих видов: Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители.

Квадратное уравнение вида x 2 +px+q=0 называется приведенным. В этом уравнении старший коэффициент равен единице: a=1. Корни приведенного квадратного уравнения находятся по формуле: Этой формулой удобно пользоваться, когда p – четное число. Пример: Решить уравнение x 2 -14x-15=0. По формуле находим: Ответ: x 1 =15, x 2 =-1.

Франсуа Виет? Теорема Виета. Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p, а произведение равно q, то есть x 1 +x 2 =-p, x 1 x 2 = q (сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену). Исследование связи между корнями и коэффициентами квадратного уравнения.

Утверждение 1: Пусть х 1 и х 2 – корни уравнения х 2 +pх+q=0. Тогда числа х 1, х 2, p, q связаны равенствами: x 1 +х 2 = - p, х 1 х 2 =q Утверждение 2: Пусть числа х 1, х 2, p, q связаны равенствами х 1 +х 2 = - p, х 1 х 2 =q. Тогда х 1 и х 2 – корни уравнения х 2 +pх+q=0 Следствие: х 2 +pх+q=(х-х 1 )(х-х 2 ). Ситуации, в которых может использоваться теорема Виета. Проверка правильности найденных корней. Определение знаков корней квадратного уравнения. Устное нахождение целых корней приведенного квадратного уравнения. Составление квадратных уравнений с заданными корнями. Разложение квадратного трехчлена на множители.

Биквадратные уравнения Биквадратным называется уравнение вида, где a 0. Биквадратное уравнение решается методом введения новой переменной: положив, получим квадратное уравнение Пример: Решить уравнение x 4 +4x 2 -21=0 Положив x 2 =t, получим квадратное уравнение t 2 +4t -21=0, откуда находим t 1 = -7, t 2 =3. Теперь задача сводится к решению уравнений x 2 = -7, x 2 =3. Первое уравнение не имеет действительных корней, из второго находим: которые являются корнями заданного биквадратного уравнения.

Решение задач с помощью квадратных уравнений Задача 1: Автобус отправился от автовокзала в аэропорт, находящийся на расстоянии 40 км. Через 10 минут вслед за автобусом выехал пассажир на такси. Скорость такси на 20 км/ч больше скорости автобуса. Найти скорость такси и автобуса, если в аэропорт они прибыли одновременно. Скорость V (км/ч) Время t (ч) Путь S (км) Автобусx40 ТаксиX+2040 На 10 мин 10 мин =ч Составим и решим уравнение:

Умножим обе части уравнения на 6x(x+20), получим: Корни этого уравнения: При этих значениях x знаменатели дробей, входящих в уравнение, не равны 0, поэтому являются корнями уравнения. Так как скорость автобуса положительна, то условию задачи удовлетворяет только один корень: x=60. Поэтому скорость такси 80 км/ч. Ответ: Скорость автобуса 60 км/ч, скорость такси 80 км/ч.

Задача 2: На перепечатку рукописи первая машинистка тратит на 3 ч меньше, чем вторая. Работая одновременно, они закончили перепечатку всей рукописи за 6ч 40 мин. Сколько времени потребовалось бы каждой из них на перепечатку всей рукописи? Количество работы в час Время t (ч) Объем работы Первая машинистка x1 Вторая машинистка x+31 Вместе за 6ч 40мин 6 ч 40 мин = 6 ч Составим и решим уравнение:

Это уравнение можно записать следующим образом: Умножая обе части уравнения на 20x(x+3), получаем: Корни этого уравнения: При этих значениях x знаменатели дробей, входящих в уравнение, не равны 0, поэтому - корни уравнения. Так как время положительно, то x=12ч. Следовательно Первая машинистка затрачивает на работу 12 ч, вторая – 12 ч + 3 ч = 15 ч Ответ:12 ч и 15 ч.

Задания для самостоятельной работы: 7. Найти два последовательных натуральных числа, произведение которых равно 210.

Желаем удачи!!!

Франсуа Виет Франсуа Виет родился в 1540 году во Франции. Отец Виета был прокурором. Сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1563 году он оставляет юриспруденцию и становится учителем в знатной семье. Именно преподавание побудило в молодом юристе интерес к математике. Виет переезжает в Париж, где легче узнать о достижениях ведущих математиков Европы. С 1571 года Виет занимает важные государственные посты, но в 1584 году он был отстранен и выслан из Парижа. Теперь он имел возможность всерьез заняться математикой. В 1591 году он издает трактат «Введение в аналитическое искусство», где показал, что, оперируя с символами, можно получить результат, применимый к любым соответствующим величинам. Знаменитая теорема была обнародована в том же году. Громкую славу получил при Генрихе lll во время Франко-Испанской войны. В течение двух недель, просидев за работой дни и ночи, он нашел ключ к Испанскому шифру. Умер в Париже в 1603 году, есть подозрения, что он был убит.