Система счисления – совокупность символов( цифр) и правил их использования для представления чисел.

Презентация:



Advertisements
Похожие презентации
Колесо истории Системы счисления. Системой счисления называется совокупность символов (цифр) и правил их использования для представления чисел.
Advertisements

Системы счисления «Все есть число» Непозиционные системы счисления Римская система счисления Как считали греки Как считали на Руси Позиционные системы.
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
«Все есть число», говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Для представления чисел используются системы.
Обозначение чисел и счёт в Древнем Египте Средняя общеобразовательная школа 125 с углублённым изучением математики. Ученицы 6б класса Школы 125 Сергеевой.
Путешествие в историю чисел Выполнила ученица 6 класса Третьякова Анастасия Руководитель: учитель информатики Кулаева Н.А. с. Межениновка, декабрь 2011г.
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Автор: Пророченко Ю.М.. Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Системы счисления Разработка учителя Разработка учителя МОУ СОШ с. Тербуны МОУ СОШ с. Тербуны Болговой Н.А. Болговой Н.А десятичная ABCDEF.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
4.1. Кодирование числовой информации Представление числовой информации с помощью систем счисления Для записи информации о количестве объектов используются.
Системы счисления. Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов.
СЧИСЛЕНИЕ (нумерация), способ выражения и обозначения чисел. Система счисления это знаковая система, в которой числа записываются по определенным правилам.
Системы счисления Содержание : Системы счисления это... Системы счисления это... Системы счисления это... Системы счисления это... Виды систем счисления.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
- Говорили древнегреческие философы, ученики Пифагора, подчеркивая важную роль чисел в практической деятельности.
1. Виды систем счисления 2. История непозиционных систем счисления 3. Перевод чисел из десятичной СС в двоичную и обратно 4. Самостоятельная работа.
2009 год. Системой счисления называется способ представления числа символами некоторого алфавита, которые называются цифрами.Все системы счисления делятся.
Цели урока: Усвоить определение следующих понятий: Система счисления, цифра, число, основание системы счисления, разряд, алфавит, непозиционная система.
Транксрипт:

Система счисления – совокупность символов( цифр) и правил их использования для представления чисел.

Люди научились считать очень давно, ещё в каменном веке. Сначала люди просто различали, один предмет перед ними или больше.. Через некоторое время появилось слово, которое обозначало два предмета. А у некоторых племён Полинезии и Австралии до самого последнего времени было только два числительных: «один, два».А все остальные числа получали название в виде сочетания этих двух числительных. Например, число четыре: два, два», три: один, два», шесть: два, два, два».. И конечно же как люди научились считать, у них появилась потребность в записи этих чисел. Находки археологов на стоянках первобытных людей доказывает, что первоначально количество предметов отображалось равным количеством каких- либо значков: чёрточек, зарубков, точек. Такая система записи чисел называется ЕДИНИЧНОЙ (УНАРНОЙ)т.к. Любое число в ней образуется путём повторения одного и того же знака, символизирующего единицу.

Пальцы- первое вычислительное устройство т. к.На пальцах можно показать количество предметов или лет. Так отголоски единичной системы счисления встречаются и сегодня. Например, чтобы узнать на каком курсе учится курсант военного училища, нужно сосчитать количество полосок нашитых на его рукаве. Так же этой системой пользуются малыши, показывая на пальцах свой возраст. Единичная система - не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени Возникли иные, более экономичные системы счисления.

Примерно в третьем тысячалетии до нашей эры в Египте появилась одна из древнейших нумераций, дошедших до нас в древних папирусах и рисунках- ЕГИПЕТСКАЯ. Для записи чисел египтяне использовали специальные значки- ИЕРОГЛИФЫ. Иероглифы использовали как для письменности, так и для обозначения ключевых Сначала значки имели сложный Вид, а с тече- нием времени обрели более простой..

Все остальные числа составляли с помощью добавления тех или иных иероглифов, а общее количество определялось суммой значения всех значков. У египтян практиковалось прибавление чисел друг к другу, то есть СЛОЖЕНИЕ( путём добавления к существующему иероглифу числа иероглифа второго слагаемого). При этом величина числа не зависела от того, в каком порядке расположены составляющие его знаки на папирусе то есть НЕПОЗИЦИОННАЯ СИСТЕМА СЧИСЛЕНИЯ. (Как писали, так и читали, подряд). Знаки можно было писать: Сверху Вниз, Справа Налево или Вперемешку. Если число уменьшалось, то при быстром ведении подсчётов, соответствующий ему знак вычёркивался или стирался. Например, X L D M расшифровывается так: Две тысячи, Две сотни, пять десятков и три единицы.

.. Особую роль у египтян играло число 2 и его степени. Умножение и деление они проводили путём последовательного удваивания и сложения чисел. Выглядели такие расчёты довольно громоздко. Например, чтобы умножить 15 на 24 составляли следующую таблицу: Здесь в левом столбце записаны результаты удвоений единицы, в правом- числа 24. Записи не кончались до тех пор, пока из чисел левого столбца не возможно было б составить множитель (1*2) 48 4(2*2) 96 8(4*2) (8*2) =15.После этого складывались числа из правого столбца =360

При делении египтяне многократно удваивали в правом столбце делитель и, соответственно, в левом столбце – 1, пока числа правого столбца оставались не больше делимого. Далее из чисел правого столбца пытались составить делимое, и если это удавалось, то сумма соответствующих чисел в левом столбце давала искомое частное. Если же делимое не делилось нацело на делитель, то получали частное и остаток. Например, чтобы разделить 541 на 12 надо было составить таблицу:

Идея приписывать цифрам разные величины в зависимости от того, какую позицию они занимают в записи числа, впервые появилась В ДРЕВНЕМ ВАВИЛОНЕ примерно в третьем тысячалетии до нашей эры. До нашего времени дошли многие глиняные таблички ДРЕВНЕГО ВАВИЛОНА, на которых решены сложнейшие задачи, такие как вычисление корней, отыскание объёма пирамиды и др. Для записи чисел вавилоняне использовали всего два знака: клин вертикальный ( единицы ) и клин горизонтальный ( десятки ). Все числа от 1 до 59 записывались с помощью этих знаков, как в обычной иероглифической системе. Пример:

Алфавитной нумирацией пользовались также южные и восточные славянские народы. У одних славянских народов числовые значения букв установились в порядке славянского алфавита, у других же (в том числе и у русских) роль цифр играли не все буквы славянского алфавита, а только те из них, которые имелись, и в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок «ТИТЛО». При этом числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите. (Порядок букв славянского алфавита был несколько иным)Алфавитной нумирацией пользовались также южные и восточные славянские народы. У одних славянских народов числовые значения букв установились в порядке славянского алфавита, у других же (в том числе и у русских) роль цифр играли не все буквы славянского алфавита, а только те из них, которые имелись, и в греческом алфавите. Над буквой, обозначавшей цифру, ставился специальный значок «ТИТЛО». При этом числовые значения букв возрастали в том же порядке, в каком следовали буквы в греческом алфавите. (Порядок букв славянского алфавита был несколько иным) В России Славянская нумирация сохранялась до конца Семнадцатого века. При Петре Первом возобладала так называемая АРАБСКАЯ НУМИРАЦИЯ сохранилась только в богослужебных книгах.В России Славянская нумирация сохранялась до конца Семнадцатого века. При Петре Первом возобладала так называемая АРАБСКАЯ НУМИРАЦИЯ сохранилась только в богослужебных книгах.

В качестве цифр используются некоторые буквы. I(1), V(5), X(10), L(50), C(100), D(500), M(1000). Значение цифры не зависит от ее положения в числе. например, в числе XXX цифра X встречается трижды, и в каждом случае обозначает одну и ту же величину 10, а в сумме XXX- 30. Величина числа в римской системе счисления определяется как сумма или разность чисел. Если меньшая цифра стоит слева от большей, то она вычитается, если справа- прибавляется. Например: 1998=MCMXCVIII=1000+( )+( )

..

У иероглифических и алфавитных систем счисления есть один существенный недостаток - в них было очень трудно выполнять арифметические операции.. В позиционной системе счисления количественное значение цифры зависит от ее позиции в числе. Позиция цифры называется разрядом. Разряд числа возрастает справа налево. Наиболее распространенной в настоящее время являются десятичная, двоичная,восьмеричная и шестнадцатеричная позиционные системы счисления. В позиционной системе счисления основание системы равно количеству цифр, используемых ею и определяет, во сколько раз различаются значения цифр соседних разрядов чисел. Основные достоинства любой позиционной системы счисления – простота выполнения арифметических операций и ограниченное количество символов, необходымых для записи любых чисел.

Французский математик Пьер Симон Лаплас ( ).Такими словами оценил « ОТКРЫТИЕ» позиционной системы счисления:»Мысль – выражать все числа немногими знаками, придавая им значение по форме, ещё значение по месту, на столько проста, что именно из-за этой простоты трудно оценить, насколько она удивительная…»

Система гадания китайской Книги перемен» « («И- Цзин»), уходящая корнями в глубочайшую древность, при внимательном анализе обнаруживает в своей основе двоичную систему счисления и позиционный принцип записи чисел !!!

На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов. В русском языке счет часто идет дюжинами, чуть реже гроссами (по 144=12 2 ), но в старину использовалось и слово для 1728=12 3. В английском языке есть особые (а не образованные по общему правилу) слова eleven (11) и twelve (12). Английский фунт состоит из 12 шиллингов.

В 595 году (уже нашей эры) - в Индии впервые появилась знакомая всем нам сегодня десятичная система счисления. (Спасибо индийцам, а то что бы мы сегодня без нее делали?) Знаменитый персидский математик Аль-Хорезми выпустил учебник, в котором изложил основы десятичной системы индусов. После перевода его на латынь и выпуска книги Леонардо Пизано (Фибоначчи) эта система стала доступна европейцам.

В настоящий момент – наиболее употребительная в информатике, вычислительной технике и смежных отраслях система счисления. Использует две цифры – 0 и 1, а также символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной части.

C D A1110E B1111F

А (S) =a n S n + a n-1 S n-1 +…+ a 1 S 1 + a 0 S 0 + a -1 S -1 +…+ a -m S m