Общий перпендикуляр спроектируется на плоскость в натуральную величину, т.к. он параллелен плоскости проекции. Проверим… можно кликнуть несколько раз.

Презентация:



Advertisements
Похожие презентации
4 В правильной треугольной пирамиде сторона основания равна 4, а боковое ребро 3. Найдите расстояние от стороны основания до противоположного бокового.
Advertisements

Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде боковое.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Построим плоскость перпендикулярно к прямой ВС.S B A В основании треугольной пирамиды SABC лежит прямоугольный треугольник с прямым углом при вершине С,
В С А А1А1 С1С1 В1В1 6 6 В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 6, найдите расстояние между прямыми АА 1 и ВС 1. 6 К Рассмотрим.
Расстояние от проекции первой прямой (т.В) до проекции второй прямой (СВ 1 ) и будет равно длине общего перпендикуляра, т.е. искомому расстоянию. Ребро.
S B AP Спроектируем на построенную плоскость обе прямые C Построим плоскость перпендикулярно к прямой ВС. S1S1S1S1 С В С А S S 1 Тогда, ВС спроектируется.
A a II Если две прямые скрещиваются, то через каждую из них проходит плоскость, параллельная другой прямой, и притом только одна. a расстоянием между скрещивающимися.
A b a b Если две скрещивающиеся прямые перпендикулярны, то легко построить общий перпендикуляр. a b 1. Через одну прямую ( a ) проводим плоскость, перпендикулярную.
Автор Сизова Н. В. Расстояние между скрещивающимися прямыми.
Тема урока Задача 1 Плоскости и перпендикулярны. В взята точка А, расстояние от которой до прямой С Плоскости и перпендикулярны. В взята точка А, расстояние.
ТЕМА УРОКА Перпендикуляр, наклонная, проекция наклонной на плоскость.
ПОДГОТОВКА к ЕГЭ задача С2. Расстояние между двумя точками. Способы нахождения 1.Как длину отрезка АВ, если отрезок удалось включить в некоторый треугольник.
А общий перпендикуляр, т.к. он параллелен плоскости проекции, спроектируется на нее в натуральную величину. C SN BC так как ВС АВС, тоS B A Обоснуем, что.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
Расстояние от точки до прямой – длина перпендикуляра Н а М А.
Определение.a a S A F N D H Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Прямая.
Методы решения задач на нахождение расстояния между скрещивающимися прямыми Учитель: Шарова С. Г.
Основные понятия Скрещивающиеся прямые Расстояние между скрещивающимися прямыми Угол между скрещивающимися прямыми.
Транксрипт:

Общий перпендикуляр спроектируется на плоскость в натуральную величину, т.к. он параллелен плоскости проекции. Проверим… можно кликнуть несколько раз. Отрезок, имеющий концы на двух скрещивающихся прямых и перпендикулярный к этим прямым, называется их общим перпендикуляром. общий перпендикуляр На рисунке АВ – общий перпендикуляр. Но построить общий перпендикуляр в задачах бывает не просто. АВb s Строим плоскость, перпендикулярную одной из скрещивающихся прямых: Она будет параллельна общему перпендикуляру к ним: II AB. Отсюда следует метод: построить плоскость, перпендикулярную одной из скрещивающихся прямых, спроектировать на нее обе прямые. Проекция прямой s: точка М. М DK Проекция прямой b: прямая KD. Итак, расстояние от проекции одной прямой до проекции другой прямой и будет равно длине общего перпендикуляра, т.е. расстоянию между скрещивающимися прямыми.

В пирамиде DABC известны длины ребер АВ=ВС=DA=DC=13 см, DB = 8, AC = 24. Найдите расстояние между прямыми DB и АС. D B A C 8 13K13 13 Построим плоскость, перпендикулярную прямой АС. АВС и ADC – равнобедренные, значит, высота является и медианой. N Спроектируем на плоскость BDN обе прямые. Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. А общий перпендикуляр, т.к. он параллелен плоскости проекции, спроектируется на нее в натуральную величину. Поэтому расстояние от проекции одной прямой до проекции другой прямой и будет равно длине общего перпендикуляра, т.е искомому расстоянию. Кстати в этой задаче получился именно общий перпендикуляр. NK – искомое расстояние. 24

В пирамиде DABC известны длины ребер АВ=ВС=DA=DC=13 см, DB = 8, AC = 24. Найдите расстояние между прямыми DB и АС. D B A C 8 13K13 13 N В равнобедренном треугольнике высота будет и медианой. 3 Треугольник BKN – египетский. Ответ: KN = 3.