В правильной четырехугольной пирамиде SABCD с вершиной S все ребра равны между собой. Точка М середина ребра SC. Найдите угол между плоскостью ADM и плоскостью.

Презентация:



Advertisements
Похожие презентации
ЗАДАЧА 1 Дано: ABCDA 1 B 1 C 1 D 1 – куб AB=1 K – середина BB 1 N – середина CC 1 E – середина A 1 B 1 KNE – плоскость сечения Найти: Sсеч.
Advertisements

Тема урока: Пирамида. Сечения пирамиды.. α А B C D B1B1 C1C1 D1D1 K1K1 Через вершину А прямоугольника ABCD проведена плоскость α, параллельная диагонали.
Дана правильная четырехугольная пирамида SABCD с вершиной S. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра AD до прямой.
В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной. Длины всех боковых ребер равны 3, точка М – середина ребра AS. Через прямую.
В правильной четырехугольной призме ABCDA 1 B 1 C 1 D 1 со стороной основания 12 и высотой 21 на ребре AA 1 взята точка М так, что AM=8. На ребре BB 1.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями.
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
Решение задач С2 Пирамида Учитель математики: Семёнова Елена Юрьевна МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Решение задач на комбинации призмы, шара и пирамиды.
Пирамида.
В правильной шестиугольной пирамиде SАВСDEF, стороны основания которой равны 4, а боковые ребра равны 3, найдите угол между прямыми BG и AD, где G – точка.
Метод координат в задачах С2 Стереометрия. Угол между прямыми - направляющий вектор прямой а - направляющий вектор прямой b - угол между прямыми.
По условию плоскость АВК перпендикулярна ребру РС, значит, РС будет перпендикулярно любой прямой лежащей в плоскости АВК. 8 Р A B 8 Основанием правильной.
Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E середина ребра SB. Найдите объем треугольной пирамиды EABC. S B D A C O h 21 Точка E.
O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной.
Консультационный центр по подготовке выпускников к Государственной (итоговой) аттестации.
Транксрипт:

В правильной четырехугольной пирамиде SABCD с вершиной S все ребра равны между собой. Точка М середина ребра SC. Найдите угол между плоскостью ADM и плоскостью основания. S B A D CKP O F Все ребра равны пирамиды. Можно обозначить ребро буквой, а можно взять за 1. Построим сечение пирамиды плоскостью ADM. Отрезок DM, т.к. точки D и M лежат в одной плоскости DSC. KM II BC Отрезок AK, т.к. точки A и K лежат в одной плоскости ASC. Построим линейный угол двугранного угла MADC. Точка Е – середина SL, по теореме Фалеса. E L M EPL – линейный угол двугранного угла MADC.

Рассмотрим равнобедренный треугольник PSL. S B A D C 2 1 KP O F 11 E L M O E F PLS OS= 6 2