Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D А В С А1А1 D1D1 С1С1 В1В1 1 1 12 К Если в кубе не дано.

Презентация:



Advertisements
Похожие презентации
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D АВ С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 Если в кубе не дано.
Advertisements

11 A D C A1A1 B1B1 C1C1 D1D1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Рассмотрев это трудоёмкое решение, метод координат.
AD C A1A1 B1B1 C1C1 D1D1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Куб отлично вписывается в систему координат. х yz?
Прямая СС 1 является наклонной к плоскости ВС 1 D. Найдем проекцию СС 1 на плоскость ВС 1 D. D А В С А1А1 D1D1 С1С1 В кубе ABCDA 1 B 1 C 1 D 1 найдите.
BA B1B1 C1C1 D1D1 A1A1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» 11 1 C На ребре СС 1 куба ABCDA 1 B 1 C 1 D 1 отмечена.
А1А1 В правильной треугольной призме ABCА 1 В 1 С 1, все ребра которой равны, найдите угол между прямыми КМ и ТЕ, где точка К – середина ребра АА 1, точка.
BA D B1B1 C1C1 D1D1 A1A1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Куб отлично вписывается в систему координат. х yz?
В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, точки G и H – середины ребер соответственно А 1 В 1 и В 1 С.
D C A B 1 E Заменим СL на параллельную прямую ME. Угол между прямыми DM и CL будет равен углу между DM и ME. Длина ребра правильного тетраэдра ABCD равна.
Сторона основания правильной треугольной призмы ABCA 1 B 1 C 1 равна 8. Высота этой призмы равна 6. Найти угол между прямыми CA 1 и АВ 1. C B1B1 A 8 60.
Длины всех ребер правильной четырехугольной пирамиды PABCD равны между собой. Найдите угол между прямыми PH и BM, если отрезок PH высота данной пирамиды,
Заменим BC на параллельную хорду АM. Угол между прямыми АР и BС будет равен углу между АР и АМ. Применим теорему косинусов для треугольника МАР. Я хочу.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
(1;1;0) В кубе ABCDA 1 B 1 C 1 D 1 точки E и K середины ребер соответственно A 1 B 1 и B 1 C 1. Найдите косинус угла между прямыми AE и BK. yzx D1D1D1D1.
BA D B1B1 C1C1 D1D1 A1A1 Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Куб отлично вписывается в систему координат. х yz?
Р ЕШЕНИЕ ЗАДАНИЙ С 2. В ЕДИНИЧНОМ КУБЕ АВСDА 1 В 1 С 1 D 1 НАЙДИТЕ УГОЛ МЕЖДУ ПРЯМЫМИ АВ 1 И ВС 1. Решение: Введем систему координат, считая началом координат.
РАССТОЯНИЯ В ПРОСТРАНСТВЕ А. Азевич, г. Москва. Определение 1Расстоянием между точками называется длина отрезка, соединяющего эти точки.
Вычисление углов между прямыми и плоскостями г.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
Дан куб ABCDA 1 B 1 C 1 D 1. Через О обозначим точку пересечения диагоналей грани ВВ 1 С 1 С куба. Найдите угол между прямыми АА 1 и ОD 1. B A1A1A1A1 B1B1B1B1.
Транксрипт:

Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D А В С А1А1 D1D1 С1С1 В1В К Если в кубе не дано ребро, то можно обозначить его буквой или взять за «1» Заменим BA 1 на параллельную прямую CD 1. Угол между прямыми А 1 В и СК будет равен углу между CD 1 и СК способ

Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D А В С А1А1 D1D1 С1С1 В1В К Применим теорему косинусов для треугольника CKD 1. Я хочу найти косинус угла KCD 1, значит, составляем теорему косинусов для стороны KD 1 :