Сфера. Г-11 урок 1. Цель: Ввести понятия сферы, шара ; познакомить с уравнением сферы, рассмотреть взаимное расположение сферы и плоскости, дать определение.

Презентация:



Advertisements
Похожие презентации
Сфера и шар, так же как окружность и круг, рассматривали еще в глубокой древности. Открытие шарообразности Земли, появление представлений о небесной сфере.
Advertisements

Сфера и шар, так же как окружность и круг, рассматривали еще в глубокой древности. Сфера и шар, так же как окружность и круг, рассматривали еще в глубокой.
Шар или сфера? O Точки А и В лежат на сфере с центром О АВ, а точка М лежит на отрезке АВ. Докажите, что A BMO A BM а) если М – середина отрезка.
Свойство касательной. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Планиметрия СтереометрияАО О А В r r Радиус сферы,
Элементы сферической геометрии Сферическая геометрия - раздел математики, в котором изучаются фигуры, расположенные на сфере. Она представляет собой своеобразный.
МОУ СОШ 1 с. Верхняя Балкария Черекского района КБР.
Теоретические сведения о шаре и его частях Теоретические сведения о шаре и его частях Сравнить объемы Земли и Луны Сравнить объемы Земли и Луны.
Шар или сфера? O Точки А и В лежат на сфере с центром О АВ, а точка М лежит на отрезке АВ. Докажите, что A BMO A BM а) если М – середина отрезка.
O Точки А и В лежат на сфере с центром О АВ, а точка М лежит на отрезке АВ. Докажите, что A BMO A BM а) если М – середина отрезка АВ, то OM AB.
Урок-лекция по теме: Геометрия –11 класс Сфера, шар основные характеристики Учитель математики МБОУ «СОШ 37» г. Новокузнецка Кривошеева Л. В.
Геометрия 11 класс. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Точка О называется.
С ф е р а и ш а р.. y x zОM Взаимное расположение сферы и плоскости d < R d.
Тела вращения Шар. Сфера и шар. Тело, ограниченное сферой, называется шаром. Сферой называется поверхность, состоящая из всех точек пространства, расположенных.
Шар или сфера? O Точки А и В лежат на сфере с центром О АВ, а точка М лежит на отрезке АВ. Докажите, что A BMO A BM а) если М – середина отрезка.
R O Определение сферы и её элементов. Сферой называется поверхность, состоящая из точек пространства, расположенных на данном расстоянии ( оно называется.
СФЕРА И ШАР. СФЕРА Определение: Сферой называется Сферой называется поверхность, состоящая поверхность, состоящая из всех точек пространства, из всех.
Цель урока 1)Вывести понятие сферы, шара, и их элементов. 2)Вывести уравнение сферы в заданной прямоугольной системе координат 3)Формировать навык решения.
Сфера и шар Выполнила Иванова Наталия 11 Б класс.
Цели урока: Ввести понятие сферы и ее элементов Вывести уравнение сферы Рассмотреть возможные случаи взаимного расположения сферы и плоскости Рассмотреть.
Сфера и шар Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Тело, ограниченное.
Транксрипт:

Сфера. Г-11 урок 1

Цель: Ввести понятия сферы, шара ; познакомить с уравнением сферы, рассмотреть взаимное расположение сферы и плоскости, дать определение касательной плоскости; познакомить с формулой для вычисления площади сферы.

С фера и шар, так же как окружность и круг, рассматривали еще в глубокой древности. Открытие шарообразности Земли, появление представлений о небесной сфере дали толчок к развитию специальной науки – СФЕРИКИ, изучающей расположенные на сфере фигуры.

Автором первого капитального сочинения о «сферике» был, по- видимому, математик и астроном Евдокс Книдский(ок.408 – 355 до н.э.). «Сферика», переведенная на арабский язык, внимательно изучалась математиками Ближнего и Среднего Востока, откуда в 18 в., в переводе с арабского, стала известна в Европе.

Сферическая геометрия нужна не только астрономам, штурманам морских кораблей, самолетов, космических кораблей, которые по звездам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, а также при геодезических съёмках больших территорий поверхности Земли, когда становится необходимым учитывать её шарообразность.

Сфера - поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Шар- тело, ограниченное сферой. т.О – центр сферы R – радиус сферы Диаметр сферы – отрезок, соединяющий две точки сферы и проходящий через её центр.

Сфера может быть получена вращением полуокружности вокруг её диаметра. Получение сферы.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью. Сечение шара.

R y x z I I I I I I I I Уравнениесферы (x 2 –x 1 ) 2 +(y 2 –y 1 ) 2 +(z 2 –z 1 ) 2 AB = M(x;y;z) C(x 0 ;y 0 ;z 0 ) (x–x 0 ) 2 +(y–y 0 ) 2 +(z–z 0 ) 2 CM = (x–x 0 ) 2 +(y–y 0 ) 2 +(z–z 0 ) 2 R 2 = R 2 = R = R =

Уравнение сферы Центр Центр (x–3) 2 +(y–2) 2 +(z – 1) 2 =16 (x–1) 2 +(y+2) 2 +(z+5) 2 = 4 (x+5) 2 +(y–3) 2 + z 2 = 25 (x – 1 ) 2 + y 2 + z 2 = 8 x 2 +(y+2) 2 +(z+8) 2 = 2 x 2 + y 2 + z 2 = 9 (x–3 ) 2 +(y–2) 2 + z 2 = 0,09 (x+7) 2 +(y–5) 2 +(z+1) 2 = 2,5 r C(3;2;1) C(1;-2;-5) C(-5;3;0) C(1;0;0) C(0;-2;-8) C(0;0;0) C(3; 2;0) C(-7; 5;-1) C(0;-4;9) r = 4 r = 2 r = 5 r = 3 r = 0,3 r = 8 r = 2 r = 2,5 x 2 +(y+4) 2 + (z+4) 2 = 6 41 r = 25

Площадь сферы.

O Точки А и В лежат на сфере с центром О АВ, а точка М лежит на отрезке АВ. Докажите, что A BMO A BM а) если М – середина отрезка АВ, то OM AB б) если OM AB, то М – середина отрезка АВ.

A BMO ? Точка М – середина отрезка АВ, концы которого лежат сфере радиуса К с центром О. Найдите а) ОМ, если R=50 см, АВ=40 см.

Взаимное расположение сферы и плоскости y x zОС

y x zОС

y x zОС

O Сечения сферы

Свойство касательной. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Планиметрия СтереометрияАО О А В r r Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Признак касательной. Планиметрия СтереометрияАО О r А В r Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательно к сфере. Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной. касательная касательная пл.

Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.15ВА 112 ОN ВN – искомое расстояние

Дома: