Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.

Презентация:



Advertisements
Похожие презентации
1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями.
Advertisements

O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E середина ребра SB. Найдите объем треугольной пирамиды EABC. S B D A C O h 21 Точка E.
В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной.
В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной. Длины всех боковых ребер равны 3, точка М – середина ребра AS. Через прямую.
В правильной четырехугольной призме АВСDA 1 B 1 C 1 D 1, стороны основания которой равны 4, а боковые ребра равны 5, найдите расстояние между прямыми АС.
Журнал «Математика» 3/2012 Метод ортогонального проектирования Задание С2.
Дана правильная четырехугольная пирамида SABCD с вершиной S. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра AD до прямой.
Методы решения задач на нахождение расстояния между скрещивающимися прямыми Учитель: Шарова С. Г.
Расстояние от точки до плоскости. В правильной четырёх- угольной пирамиде SABCD, все рёбра которой равны 1, найдите расстояние от середины ребра BC до.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
O S B A DC В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K середины ребер SB и SC соответственно. Найдите косинус угла.
Наклонная проекция O Дана правильная треугольная пирамида DABC с вершиной D. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра.
ПОДГОТОВКА к ЕГЭ задача С2. Расстояние между двумя точками. Способы нахождения 1.Как длину отрезка АВ, если отрезок удалось включить в некоторый треугольник.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
А Угол между наклонной и плоскостью Угол между наклонной и плоскостью равен углу между наклонной и её проекцией. На практике порой опустить перпендикуляр.
Подсказки В правильной четырёхугольной пирамиде MABCD с вершиной M стороны основания равны 3, а боковые рёбра равны 8. Найдите площадь сечения пирамиды.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Транксрипт:

Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина бокового ребра SB. S В D A12 C K L Через т. В проведем плоскость, перпендикулярную к плоскости АСМ. В плоскости ВSD опустим перпендикуляр из точки В. ВL – искомое расстояние. M O Тогда по теореме Фалеса: если SM = MB, то OK = KB. MK – средняя линия SOB. MK BD SO BD SO II MK

S D A12 C K 2 6 L M O ВL – искомое расстояние. Вычислим площадь треугольника МОВ. О М26 К В О М29 L В 2 9 :2 В