A a IIa b a b План решения задачи. 1. Через одну прямую проводим плоскость, параллельную второй прямой 2. Через вторую прямую проводим плоскость, перпендикулярную.

Презентация:



Advertisements
Похожие презентации
Задачи на нахождение расстояния между скрещивающимися прямыми.
Advertisements

A a IIa b a b План решения задачи. 1. Через одну прямую проводим плоскость, параллельную второй прямой 2. Вторую плоскость проводим, перпендикулярно к.
Применим определение расстояния между скрещивающимися прямыми. Построим плоскость параллельную прямой АВ и проходящую через другую прямую. АВ II CD, SC.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
A А Н А Расстояние от точки до плоскости Расстояние от точки до плоскости – длина перпендикуляра AH. N А B На практике порой опустить перпендикуляр из.
Тема урока Задача 1 Плоскости и перпендикулярны. В взята точка А, расстояние от которой до прямой С Плоскости и перпендикулярны. В взята точка А, расстояние.
Построим плоскость перпендикулярно к прямой ВС.S B A В основании треугольной пирамиды SABC лежит прямоугольный треугольник с прямым углом при вершине С,
Ребро куба ABCDA 1 B 1 C 1 D 1 равно 6. Найдите расстояние от ребра DC до диагонали D 1 B куба. D С 1 С 1 С 1 С 1 D1D1D1D1 А А 1 А 1 А 1 А В В 1.
S B AP Спроектируем на построенную плоскость обе прямые C Построим плоскость перпендикулярно к прямой ВС. S1S1S1S1 С В С А S S 1 Тогда, ВС спроектируется.
Применяем определение расстояния между скрещивающимися прямыми. Построим плоскость параллельную прямой АВ и проходящую через другую прямую. АВ CD, SC (SDC),
Основанием пирамиды SABC является прямоугольный треугольник ABC, C = 90 0, BС = 4, AC = 6, боковое ребро SA перпендикулярно плоскости основания пирамиды.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1 сторона основания равна 1, а высота равна 6. Найдите угол между прямой F 1 В 1 и плоскостью.
Уравнение плоскости. Расстояние от точки до плоскости.
Углом, между прямой и плоскостью называется угол между это прямой и ее проекцией на плоскость 2.
Тема: Тема: Расстояние от точки до прямой. Расстояние между скрещивающимися прямыми, геометрические методы. Урок 5 «Решаем С2 ЕГЭ» Разработала: Куракова.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
Транксрипт:

a a IIa b a b План решения задачи. 1. Через одну прямую проводим плоскость, параллельную второй прямой 2. Через вторую прямую проводим плоскость, перпендикулярную к плоскости 3. Из любой точки прямой опускаем перпендикуляр на линию пересечения плоскостей.

a a IIa b a b План решения задачи. 1. Через одну прямую проводим плоскость, параллельную второй прямой 2. Вторую плоскость проводим, перпендикулярно к плоскости 3. Из точки пересечения прямой со второй плоскостью опускаем перпендикуляр на линию пересечения плоскостей. Иногда эти плоскости не надо строить… их надо найти, они уже есть на чертеже.

Треугольники MSD и PCD подобны по двум углам: угол D – общий, SMD и CPD – прямые. Квадрат АВСD со стороной 4 является основанием пирамиды SАВСD. Грань CDS перпендикулярна плоскости основания пирамиды. Найдите расстояние между прямыми SD и BC,если высота пирамиды SM равна 4 и DM : MC = 3 : 1. А С В D 4P4 3части 1часть Плоскость SDA проходит через перпендикуляр AD к плоскости СDS. Значит, плоскость SDA и СDS перпендикулярны. 1. Через прямую SD проходит плоскость ADS, параллельная второй прямой СВ (т.к. СВ II AD, а AD ADS). 3. Из точки С опускаем перпендикуляр на линию пересечения плоскостей SD. СР – искомое расстояние. как стороны квадрата как стороны квадрата AD DС SM AD SM ABC AD DС AD SM AD SDC DM : MC = 3 : 1, тогда весь отрезок CD – 4 части. По условию сторона квадрата равна 4. СМ = 4:4 = 1 (1 часть) MD = 4:4*3 = 3 (3 часть) S M 4 5 S M C D 4 P 4 5