1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями.

Презентация:



Advertisements
Похожие презентации
Задачи на нахождение углов между плоскостями. (Вычислительные методы)
Advertisements

3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
В основании четырехугольной пирамиды SABCD лежит квадрат ABCD со стороной. Длины всех боковых ребер равны 3, точка М – середина ребра AS. Через прямую.
Решение задач С2 Пирамида Учитель математики: Семёнова Елена Юрьевна МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Решение заданий С 2 координатно- векторным методом.
В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной.
В этом уравнении плоскости коэффициенты – координаты вектора нормали к плоскости (то есть вектора, перпендикулярного плоскости).
Объем правильной четырехугольной пирамиды SABCD равен 12. Точка E середина ребра SB. Найдите объем треугольной пирамиды EABC. S B D A C O h 21 Точка E.
В правильной четырехугольной пирамиде SABCD с вершиной S все ребра равны между собой. Точка М середина ребра SC. Найдите угол между плоскостью ADM и плоскостью.
ЕГЭ Задачи типа С 2 Задание С 2 ЕГЭ. Угол между плоскостями. Координатный метод решения стереометрических задач типа С 2.
T AB C M 1 K O1O1O1O1 В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ.
В правильной шестиугольной пирамиде SАВСDEF, стороны основания которой равны 4, а боковые ребра равны 3, найдите угол между прямыми BG и AD, где G – точка.
А C B D В правильной 3-уг. Пирамиде сторона основания равна а, высота Н. Найдите: а) боковое ребро; б) плоский угол при вершине пирамиды; в) угол между.
В правильной шестиугольной пирамиде SАВСDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите угол между прямыми SF и BM, где М – середина.
5. (устно) Боковое ребро правильной пирамиды вдвое больше ее высоты. Определите угол наклона бокового ребра к плоскости основания. О S D С В А Решение:
В правильной четырехугольной призме АВСDА 1 В 1 С 1 D 1 стороны основания равны 2, а боковые ребра 5. На ребре АА 1 отмечена точка Е, так что АЕ : ЕА.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Тема урока: «Правильная пирамида».. Цели урока: –введение понятия правильной пирамиды; –рассмотрение свойств правильной пирамиды; –введение понятия апофема;
Транксрипт:

1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями ABC и ACM, где точка M делит ребро BS так, что BM : MS = 2 : 1.2 S D B A 5 C M 2 части 1 часть O MO AC, BOM – линейный угол двугранного угла MACB BO AC ВО = 3 – это составляет 3 части. КО = 3 : 3 = 1 (это 1 часть) ВК = 3 : 3 * 2 = 2 (это 2 части) BS = 5 – это составляет 3 части. SM = 5 : 3 = (это 1 часть) MB = 5 : 3 * 2 = (это 2 части) Тогда по теореме Фалеса: если SM : MB = 1 : 2, тогда OK : KB = 1 : 2. MK BO SO BO SO II MK 2 части K