Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона основания равна 3, а высота 4. Найдите расстояние от бокового ребра до противолежащей стороны основания. D B A C Построим плоскость, перпендикулярную прямой АС. АВС и ADC – равнобедренные, значит, высота является и медианой. N Спроектируем на плоскость BDN обе прямые. А общий перпендикуляр, т.к. он параллелен плоскости проекции, спроектируется на нее в натуральную величину. Поэтому расстояние от проекции одной прямой до проекции другой прямой и будет равно длине общего перпендикуляра, т.е. искомому расстоянию.K 3 Кстати, в этой задаче получился именно общий перпендикуляр.3333
D B A C N K 60 0 O Применим и подобие треугольников KBN и OBD. Треугольники подобны по двум углам: угол B – общий, DOB и NKB – прямые. Составим пропорцию сходственных сторон. Ответ: О – точка пересечения медиан. Применим свойство медиан: медианы треугольника пересекаются в отношении 2 к 1, считая от вершины BO : ON = 2 : 1. Вся медиана BN – это 3 части. NО = : 3 = (это 1 часть) BО = : 3 * 2 = 3 (это 2 части)