3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В.

Презентация:



Advertisements
Похожие презентации
1часть В правильной четырехугольной пирамиде SABCD с основанием ABCD сторона основания равна 3, а боковое ребро равно 5. Найдите угол между плоскостями.
Advertisements

O S A CB 1 1 D Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. K наклонная проекция M BM BK B M ? 22 В правильной.
Высота правильной четырехугольной пирамиды SABCD равна 24, а сторона основания равна 12. Найдите расстояние от вершины В до плоскости АСМ, где М – середина.
2 1 В правильном тетраэдре АВСD точка М середина ребра DC. Найдите угол между прямой ВМ и плоскостью АВС. наклонная O D A C B E N проекция Если не дано.
В правильном тетраэдре AВСD найдите угол между медианой ВМ грани АВD и плоскостью BCD. D A C B E N M 2 1 Если не дано ребро, то можно обозначить.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Наклонная проекция O Дана правильная треугольная пирамида DABC с вершиной D. Ребро основания пирамиды равно, высота –. Найдите расстояние от середины ребра.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде сторона.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
Одна из них спроектируется в точку: АC в точку N, а прямая BD в прямую BD, т.к. она лежит в плоскости проекции. В правильной треугольной пирамиде боковое.
Фалес Милетский Древнегреческий ученый (ок. 625 – 547 гг. до н. э.) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через.
В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите тангенс угла между плоскостями SAD и SBD. B D S A 1 C 1 1 О K 2 По обратной.
Решение С 2 (вариант 5) из диагностической работы за г.
Пример решения задач по теме: «Угол между прямой и плоскостью»
Задачи на нахождение углов между плоскостями. (Вычислительные методы)
Дан правильный тетраэдр MABC с ребром 1. Найдите расстояние между прямыми ВL и MO и, где L середина ребра MC, O центр грани ABC. М C В А E N L.
Урок 1 Угол между прямой и плоскостью. Углом между прямой, не перпендикулярной плоскости и плоскостью называется угол между этой прямой и ее проекцией.
Тема: Угол между прямой и плоскостью Тема: Угол между прямой и плоскостью. Урок 2 «Решаем С2 ЕГЭ» Разработала: Куракова Е. В., учитель математики МБОУ.
В правильном тетраэдре ABCD найдите угол между высотой тетраэдра DH и медианой BM боковой грани BDC. H D C A B 1 1 M E Заменим DH на параллельную.
Задачи С 2 P CD A B a a 2 2a M a O A OP 2 a M 1. Длины всех ребер правильной четырехугольной пирамиды PABCD равны между собой. Найдите угол между прямыми.
Транксрипт:

3 20 AC ВN, AC SN АBC ВNS, NM NKнаклонная O S B A C K проекция 10 Угол между наклонной и плоскостью равен углу между наклонной и ее проекцией. N M ? В правильной треугольной пирамиде SABC с основанием ABC сторона основания равна 6, а боковое ребро равно 10. Найдите угол между плоскостью ABC прямой MN, где N – середина ребра AC, а точка M делит ребро BS так, что BM : MS = 2 : части 1 часть 3 10 Докажем, что плоскости ABC и SBN перпендикулярны. AC BNS, MK BNСтроим M K AC перпендикулярна к двум пересекающимся прямым, лежащим в плоскости BNS, значит, AC перпендикулярна плоскости BNS. NM3 3 О – точка пересечения медиан. Применим свойство медиан: медианы треугольника пересекаются в отношении 2 к 1, считая от вершины BO : ON = 2 : 1. Вся медиана BN – это 3 части. NО = 9 : 3 = 3 (это 1 часть) ВО = 9 : 3 * 2 = 6 (это 2 части) 3 6 1часть 2 части 24 Плоскость АBC проходит через перпендикуляр AC к плоскости ВNS. Значит, плоскости перпендикулярны BN – линия пересечения плоскостей ВО = 6 – это составляет 3 части. КО = 6 : 3 = 2 (это 1 часть) ВК = 6 : 3 * 2 = 4 (это 2 части) BS = 10 – это составляет 3 части. SM = 10 : 3 = (это 1 часть) MB = 10 : 3 * 2 = (это 2 части) Тогда по теореме Фалеса: если SM : MB = 1 : 2, тогда OK : KB = 1 : 2. MK BN SO BN SO II MK

3 20 O S B A C K 10 В правильной треугольной пирамиде SABC с основанием ABC сторона основания равна 6, а боковое ребро равно 10. Найдите угол между плоскостью ABC прямой MN, где N – середина ребра AC, а точка M делит ребро BS так, что BM : MS = 2 : части 1 часть 3 10 NM часть 2 части Мы знаем катеты треугольника KMN, значит, вычислим отношение тангенс: отношение противолежащего катета к прилежащему катету.