Решение задач с помощью квадратных уравнений алгебра, 8 класс Учитель: Гончаров О. Н. с. Верхопенье - 2010 г. МОУ «Верхопенская средняя общеобразовательная.

Презентация:



Advertisements
Похожие презентации
Квадратные уравнения. Содержание Определение квадратного уравнения Виды квадратных уравнений Решение квадратных уравнений Теорема Виета Заключение.
Advertisements

Автор: учитель математики Забродина Елена Петровна МОУ Старомаксимкинская оош.
ДОМАШНЕЕ ЗАДАНИЕ. ЗАДАЧА 16. Работу выполнила: Марченко Виктория 9 «В»
Решение задач с помощью квадратных уравнений Составила учитель математики МБОУ Сатинской СОШ Горбунова О.Е.
Квадратные уравнения Обобщающий урок 8 класс. Квадратное уравнение и его корни Какое уравнение называют квадратным? Запишите примеры. Как называют коэффициенты.
1)Обучение составлению системы уравнений по условию задачи. 2)Развитие способности к содержательному обобщению и рефлексии. 3)Повышение интереса к решению.
Итоговое повторение 8 класс. Рациональные дроби 1.Сократите дробь 9+ х²-6х (а -7)² х² – 2а 25 – b² 3a b +b² (a +3)².
У ЧЕБНО - ТРЕНИРОВОЧНЫЙ ТЕСТ 9 класс Новосёлова Е.А. МОУ «Усть-Мосихинская СОШ»
КВадратные УРавнения – это легко!. КЛАССИФИКАЦИЯ КВУР.
Цели и задачи урока: выработать умение применять квадратные уравнения для решения алгебраических и геометрических задач; продолжить формирование практических.
Теорема Пифагора задачи задачи. Формулировки и формула Сформулируйте и запишите с помощью букв a, b и c теорему Пифагора. Сформулируйте теорему, обратную.
Урок- соревнование Путешествие по стране квадратных уравнений.
1. Какое из уравнений является квадратным: 1)2x²-7x+1=0 2)1-12x=0 3)x 4_ 27x=0 Ответ:1)
Квадратные уравнения. Решение задач. Урок 5. Устная работа. Найдите сторону квадрата, если его площадь равна: а) 81 см 2 ; б) 0,49 дм 2 ; в) м 2 ; г)
«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу различными способами, чем решать три- четыре различные задачи. Решая одну задачу.
Добро пожаловать в геометрию! Как здорово, что вместе мы Сегодня собрались!
Учитель МОУ лицея 35 г.Ставрополя Данченко О.В.. ЦЕЛЬ УРОКА: разработать алгоритм выведения новой формулы корней квадратного уравнения с четным вторым.
Методы решения квадратных уравнений. Определение Квадратные уравнения (КВУР) – уравнения вида ax ²+bx+c =0, где x – переменная, a, b и c – любые числа,
ТЕМА : КВАДРАТНЫЕ УРАВНЕНИЯ Прилагается презентация к уроку на 17 слайдах. Основные цели урока : обобщить и систематизировать знания ; закрепить умения.
Определение квадратного уравнения. Определение Квадратным уравнением называется уравнение вида ах 2 + bx + c=0, где х – переменная; а, b и с – некоторые.
Транксрипт:

Решение задач с помощью квадратных уравнений алгебра, 8 класс Учитель: Гончаров О. Н. с. Верхопенье г. МОУ «Верхопенская средняя общеобразовательная школа имени М. Р. Абросимова» Тема урока:

I. Повторение пройденного материала по теме «Квадратные уравнения» 1.Прокомментируйте уравнения: 1)4 х + 7 = 0 – 2)2 х ² + 6 х = 0 – 3)3 х ² - 5 х + 8 = 0 – 4)2 х ³ - 7 х + 15 = 0 – 2.Как решаются неполные квадратные уравнения: 1) 2 х ² - 6 х = 0, 2) 3 х ² - 15 = 0, 3) 1,6 х ² = 0 ?

I. Повторение пройденного материала по теме «Квадратные уравнения» 2.Решите квадратные уравнения: 1)2 х ² + 7 х = 0, 2)3 х ² - 12 = 0, 3)-5 х ² = 0, 4)(2 х – 1)(3 х + 2) = 0.

I. Повторение пройденного материала по теме «Квадратные уравнения» 3.Назовите коэффициенты квадратного уравнения: 1) 3 х ² - 5 х + 12 = 0 а = ___, b = ___, с = ___ ; 2) х ² + 2,5 х = 0 а = ___, b = ___, с = ___ ; 3) - х ² - 12 = 0 а = ___, b = ___, с = ___.

I. Повторение пройденного материала по теме «Квадратные уравнения» 4.Запишите формулу корней квадратного уравнения: 1)а х ² + b х + c = 0 х = ___________, где D = _________ ; 2)a х ² + b х + c = 0 при b = 2k ( т. е. b – четное ) х = ___________, где D/4 = _________ ; 3)*х ² + p х + q = 0 ( как будет выглядеть формула для приведенного квадратного уравнения?) х = ___________, где D = _________.

I. Повторение пройденного материала по теме «Квадратные уравнения» 5.Решите квадратные уравнения: 1)3 х ² - 8 х + 7 = 0, 2)4 х ² + 12 х + 9 = 0, 3)3 х ² + 16 х - 12 = 0, 4)*| х ² + 7 х + 8| = 8, 5)*| х ² - 3 х + 4| = |2 х - 2|

II. Изучение нового материала по теме «Решение задач с помощью КВУР» Многие задачи алгебры, геометрии, физики и техники приводят к необходимости решения квадратных уравнений. Пример 1. Произведение двух натуральных чисел, одно из которых на 5 больше другого, равно 104. Найдите эти числа.

II. Изучение нового материала по теме «Решение задач с помощью КВУР» Пример 1. Произведение двух натуральных чисел, одно из которых на 5 больше другого, равно 104. Найдите эти числа. Решение. Пусть х – меньшее из данных чисел, тогда (х + 5) – большее из данных чисел. По условию задачи х · (х + 5) = 104. Решим полученное уравнение. х² + 5х – 104 = 0, D = b² - 4ac = 5² + 4·1·104 = 441, x = = = ; х = не удовлетворяет условию задачи ( натуральные числа ); х = 8 - меньшее число. Тогда = 13 - большее число. Ответ: 8 и 13.

II. Изучение нового материала по теме «Решение задач с помощью КВУР» Пример 2. В прямоугольном треугольнике один катет больше другого на 7 см, а гипотенуза больше меньшего катета на 8 см. Найдите стороны треугольника. Решение. Пусть х см – длина меньшего катета, тогда х + 7 см – длина большего катета, х + 8 см – длина гипотенузы. По теореме Пифагора х² + (х + 7)² = (х + 8)². Решим полученное уравнение. х² + х² + 14х + 49 = х² + 16х + 64, х² – 2х – 15 = 0, х = - 3, - не удовлетворяет условию задачи. х = 5 (см) - меньший катет. Тогда = 12(см) – больший катет, = 13(см) – гипотенуза. Ответ: 5 см, 12 см и 13 см.

II. Изучение нового материала по теме «Решение задач с помощью КВУР» Пример 3. Тело брошено вертикально вверх с начальной скоростью V = 50 м/с. Через сколько секунд тело окажется на высоте h? Вычислите для случаев: а) h = 80 м, б) h = 125 м, в) h = 150 м. Решение. Из физики известно, что высота h, на которой брошенное вертикально вверх тело окажется через t секунд вычисляется по формуле: Подставляя данные значения в формулу, получим h = 50t – 5t², или 5t² – 50t + h = 0. Решим полученное уравнение. D = k² - ac = (- 25)² – 5·h = 625 – 5h. а) Если h = 80, то D = 625 – 5·80 = 225, t = = = ; t = 2 (с), t = 8 (с). б) Если h = 125, то D = 625 – 5·125 = 0, t = – = = 5 (с). в) Если h = 150, то D = 625 – 5·150 = – нет решений.

III. Решение задач с помощью квадратных уравнений На уроке: 1) 559, 562; 2) с /р: 561. На дом: 560, 563; 565* / 577.

IV. Подведение итогов по теме: «Решение задач с помощью КВУР» Где встречается необходимость решения квадратных уравнений? Как решаются задачи с помощью уравнений? Решение какой задачи мне больше всего понравилось? Рефлексия.