Анатоль Франс 1844 - 1924 Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.

Презентация:



Advertisements
Похожие презентации
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
Advertisements

Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
У.У. Сойер Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи. Решая одну.
Тригонометрические уравнения Вопросы для повторения: уравнение cost = a уравнение sint = a.
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
Презентация к уроку по алгебре (10 класс) по теме: Методы решения тригонометрических уравнений, урок алгебры в 10 классе
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента,
Презентация к уроку (алгебра, 11 класс) по теме: Презентация к уроку "Решение тригонометрических уравнений с отбором корней на заданном отрезке"
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
ОСНОВНЫЕ ПОНЯТИЯ ТРИГОНОМЕТРИИ Выполнил : ученик 10 «А» класса МОУ КСОШ Курныков Александр.
Типы тригонометрических уравнений Простейшие тригонометрические уравнения Уравнения, сводящиеся к квадратным Уравнения, решающиеся оценкой левой и правой.
«Разминка» 1. Решение уравнения вида cos x=a при |a| > 1? 2. При каком значении а, уравнение cos x =a имеет решения ? 3. На какой оси откладывается значение.
Т.С. Зайцева, учитель математики, 2010 г. Тема урока Первые представления о решении тригонометрических уравнений.
Уравнение cos x = a. Уравнение cost = a 0 x y 2. Отметить точку а на оси абсцисс. 3. Построить перпендикуляр в этой точке. 4. Отметить точки пересечения.
Решение простейших тригонометрических уравнений. Кровякова Ольга Владимировна sin x = 1 cos x = 0 sin 4x – sin 2x = 0 Удачи!
Решение простейших тригонометрических уравнений. Учитель Горбунова В.А «Без уравнения нет математики как средства познания природы» академик П. С.Александров.
Т РИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ Алгебра и начала анализа.10 кл. Презентация к уроку. Подготовила учитель физики и математики Аликбирова С.К.
Решение тригонометрических уравнений. Виды тригонометрических уравнений.
Область опрделения функции y = arcsin x – отрезок [-1;1] Область значений – отрезок [-π/2; π/2]. График функции y = arcsin x симметричен графику функции.
Транксрипт:

Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.

sin x = 1 cos x = 0 sin 4x – sin 2x = 0 Удачи! Решение тригонометрических уравнений.

Проверочная работа. Вариант 1.Вариант 2. 1.Каково будет решение уравнения cos x = a при а > 1 1.Каково будет решение уравнения sin x = a при а > 1 2. При каком значении а уравнение cos x = a имеет решение? 2.При каком значении а уравнение sin x = a имеет решение? 3.Какой формулой выражается это решение? 3.Какой формулой выражается это решение? 4. На какой оси откладывается значение а при решении уравнения cos x = a ? 4. На какой оси откладывается значение а при решении уравнения sin x = a ?

Проверочная работа. Вариант 1.Вариант В каком промежутке находится arccos a ? 5. В каком промежутке находится arcsin a ? 6.В каком промежутке находится значение а? 6. В каком промежутке находится значение а? 7.Каким будет решение уравнения cos x = 1? 7. Каким будет решение уравнения sin x = 1? 8. Каким будет решение уравнения cos x = -1? 8. Каким будет решение уравнения sin x = -1?

Проверочная работа. Вариант 1.Вариант Каким будет решение уравнения cos x = 0? 9. Каким будет решение уравнения sin x = 0? 10. Чему равняется arccos ( - a)? 10. Чему равняется arcsin ( - a)? 11. В каком промежутке находится arctg a? 11. В каком промежутке находится arcctg a? 12. Какой формулой выражается решение уравнения tg x = а? 12. Какой формулой выражается решение уравнения сtg x = а?

Вариант 1.Вариант Нет решения На оси ОхНа оси Оу

Уравнение cost = a 0 x y 2. Отметить точку а на оси абсцисс. 3. Построить перпендикуляр в этой точке. 4. Отметить точки пересечения перпендикуляра с окружностью. 5. Полученные точки – решение уравнения cost = a. 6. Записать общее решение уравнения. 1. Проверить условие | a | 1 a t1t1 -t 1 1

Уравнение sint = a 0 x y 2. Отметить точку а на оси ординат. 3. Построить перпендикуляр в этой точке. 4. Отметить точки пересечения перпендикуляра с окружностью. 5. Полученные точки – решение уравнения sint = a. 6. Записать общее решение уравнения. 1. Проверить условие | a | 1 a t1t1 π-t 1 1

Решение какого уравнения показано на тригонометрической окружности? sin x = 1/2 1.

Решение какого уравнения показано на тригонометрической окружности? cos x = 2/2 2.

Решение какого уравнения показано на тригонометрической окружности? tg x = -3/3 3.3.

Решение какого уравнения показано на тригонометрической окружности? ctg x =

Установите соответствие: sin x = 0 sin x = - 1 sin x = 1 cos x = 0 cos x = 1 tg x = 1 cos x =

Установите соответствие: sin x = 0 sin x = - 1 sin x = 1 cos x = 0 cos x = 1 tg x = 1 cos x =

Методы решения тригонометрических уравнений. Уравнения сводимые к алгебраическим. Вариант 1: Вариант 2: Необходимо выбрать соответствующий прием для решения уравнений.

Методы решения тригонометрических уравнений. Разложение на множители Вариант 1: Вариант 2: Уравнения сводимые к алгебраическим

Методы решения тригонометрических уравнений. Разложение на множители Вариант 1: Вариант 2: Уравнения сводимые к алгебраическим Введение новой переменной (однородные уравнения)

Методы решения тригонометрических уравнений. Разложение на множители Вариант 1:Вариант 2: Уравнения сводимые к алгебраическим Введение новой переменной (однородные уравнения) Введение вспомогательного аргумента.

Методы решения тригонометрических уравнений. Разложение на множители Уравнения сводимые к алгебраическим Введение новой переменной (однородные уравнения) Введение вспомогательного аргумента. Уравнения, решаемые переводом суммы в произведение В1:В2: В1: В2: Применение формул понижения степени.

. При каких значениях параметра уравнение имеет на промежутке не меньше 3 корней?

При уравнение имеет два решения. Чтобы оно имело не менее трех решений: Ответ:

Домашнее задание: Решить уравнение с параметром графическим способом